PowerLZY / MalGAN
主题为”基于GAN的恶意软件对抗样本生成“。首先介绍了恶意软件发展现状,引出基于模式匹配、特征空间和问题空间三种方式去检测恶意软件。然后介绍了如何生成对抗样本攻击恶意软件检测器,详细介绍了基于GAN的恶意软件对抗样本的MalGAN框架,并对实验结果进行了对比。最后总结了结构性对抗样本的约束:可用转换 、保留语义、似然性、副作用特征。
☆31Updated 3 years ago
Related projects ⓘ
Alternatives and complementary repositories for MalGAN
- Few-Shot malware classification using fused features of static analysis and dynamic analysis (基于静态+动态分析的混合特征的小样本恶意代码分类框架)☆28Updated 2 years ago
- adversarial examples, adversarial malware examples, adversarial malware detection, adversarial deep ensemble, Android malware variants☆55Updated last year
- 基于深度学习的恶意软件检测研究;MalConv;☆84Updated 2 years ago
- Codes for AICS'2019 challenge problem☆22Updated 5 years ago
- A curated resource list of adversarial attacks and defenses for Windows PE malware detection.☆67Updated 2 years ago
- ☆14Updated 3 years ago
- Code for "MalGraph: Hierarchical Graph Neural Networks for Robust Windows Malware Detection"☆41Updated 2 years ago
- ☆27Updated 2 years ago
- ☆11Updated 5 years ago
- Source code of Malware Classification by Learning Semantic and Structural Features of Control Flow Graphs (TrustCom 2021)☆18Updated 2 years ago
- ☆27Updated 4 years ago
- Reproduction of the paper//arxiv.org/pdf/1803.04173.pdf☆18Updated 6 years ago
- 使用Bert做embedding,结合BiLSTM做恶意软件的多分类任务☆41Updated 4 years ago
- Code from the paper: Neurlux: Dynamic Malware Analysis Without Feature Engineering☆12Updated 3 years ago
- Building relation graph of Android APIs to catch the semantics between APIs, and used to enhancing Android malware detectors☆78Updated 2 years ago
- An explainable GNN-based Android malware detection system in paper "MsDroid: Identifying Malicious Snippets for Android Malware Detection…☆50Updated 9 months ago
- 基于卷积神经网络的恶意软件检测方法☆49Updated 5 years ago
- MAB-Malware an open-source reinforcement learning framework to generate AEs for PE malware. We model this problem as a classic multi-arme…☆40Updated last year
- ☆16Updated 2 years ago
- Transfer Learning for Image-Based Malware Classification☆47Updated 2 years ago
- ☆19Updated 5 years ago
- Code for our USENIX Security 2021 paper -- CADE: Detecting and Explaining Concept Drift Samples for Security Applications☆129Updated last year
- FewShot Malware Classification based on API call sequences, also as code repo for "A Novel Few-Shot Malware Classification Approach for U…☆16Updated 3 years ago
- ☆16Updated 2 years ago
- ☆21Updated 4 years ago
- The code and data for Dynamic Malware Analysis with Feature Engineering and Feature Learning.☆27Updated 4 years ago
- Android Malware Detection with Graph Convolutional Networks using Function Call Graph and its Derivatives.☆35Updated 3 years ago
- adversarial malware detection via a principled way☆16Updated last year
- the instructions about request access to AdvDroidZero☆10Updated 7 months ago
- Code for the AsiaCCS 2021 paper: "Malware makeover: Breaking ML-based static analysis by modifying executable bytes"☆48Updated 6 months ago