SEU-ProactiveSecurity-Group / MalPurifier
Enhancing Android Malware Detection with Adversarial Purification against Evasion Attacks
☆24Updated last month
Related projects ⓘ
Alternatives and complementary repositories for MalPurifier
- A curated list of malware-related papers.☆21Updated 8 months ago
- Code for "MalGraph: Hierarchical Graph Neural Networks for Robust Windows Malware Detection"☆41Updated 2 years ago
- 从Androzoo下载数据集,区分年份以及良性/恶意应用,支持协程、代理、断点继续、错误重试等☆42Updated last year
- ☆30Updated 3 years ago
- Source code of Malware Classification by Learning Semantic and Structural Features of Control Flow Graphs (TrustCom 2021)☆18Updated 2 years ago
- An explainable GNN-based Android malware detection system in paper "MsDroid: Identifying Malicious Snippets for Android Malware Detection…☆50Updated 8 months ago
- the instructions about request access to AdvDroidZero☆10Updated 7 months ago
- ☆14Updated 3 years ago
- A curated resource list of adversarial attacks and defenses for Windows PE malware detection.☆67Updated 2 years ago
- Continuous Learning for Android Malware Detection (USENIX Security 2023)☆58Updated last year
- A collection of security papers on top-tier publications☆35Updated 3 weeks ago
- 基于深度学习的恶意软件检测研究;MalConv;☆82Updated 2 years ago
- Few-Shot malware classification using fused features of static analysis and dynamic analysis (基于静态+动态分析的混合特征的小样本恶意代码分类框架)☆28Updated 2 years ago
- A novel and interpretable ML-based approach to classify malware with high accuracy and explain the classification result meanwhile.☆26Updated last year
- Building relation graph of Android APIs to catch the semantics between APIs, and used to enhancing Android malware detectors☆78Updated 2 years ago
- 2018年全国大学生信息安全竞赛作品赛一等奖☆25Updated 4 years ago
- Official Repository of "Robust Malware Classification via Deep Graph Networks on Call Graph Topologies" (ESANN 2021)☆11Updated last year
- Explainable AI for Android Malware Detection: Towards Understanding Why the Models Perform So Well?☆12Updated 2 years ago
- 主题为”基于GAN的恶意软件对抗样本生成“。首先介绍了恶意软件发展现状,引出基于模式匹配、特征空间和问题空间三种方式去检测恶意软件。然后介绍了如何生成对抗样本攻击恶意软件检测器,详细介绍了基于GAN的恶意软件对抗样本的MalGAN框架,并对实验结果进行了对比。最后总结了结构…☆31Updated 3 years ago
- ☆15Updated 2 years ago
- adversarial malware detection via a principled way☆16Updated last year
- ☆21Updated 4 years ago
- revised☆20Updated 4 years ago
- AI Model Security Reading Notes☆35Updated 3 months ago
- [code] "CFGExplainer: Explaining Graph Neural Network-Based Malware Classification from Control Flow Graphs" by Jerome Dinal Herath, Prit…☆33Updated 2 years ago
- MalScan: Fast Market-Wide Mobile Malware Scanning by Social-Network Centrality Analysis☆41Updated 4 years ago
- ☆18Updated 9 months ago
- Official implementation of Prompt Engineering-assisted Malware Dynamic Analysis Using GPT-4☆24Updated 9 months ago
- Evading Provenance-Based ML Detectors with Adversarial System Actions☆24Updated 2 months ago
- A unified framework for AI-enhanced code analysis.☆9Updated last year