PFCCLab / CampLinks
飞桨护航计划集训营
☆19Updated last week
Alternatives and similar repositories for Camp
Users that are interested in Camp are comparing it to the libraries listed below
Sorting:
- 【HACKATHON 预备营】飞桨启航计划集训营☆17Updated last month
- Implement custom operators in PyTorch with cuda/c++☆76Updated 3 years ago
- ☆39Updated 8 months ago
- Triton Documentation in Chinese Simplified / Triton 中文文档☆99Updated last month
- PFCC 社区博客☆14Updated this week
- A light llama-like llm inference framework based on the triton kernel.☆169Updated 3 weeks ago
- 使用 CUDA C++ 实现的 llama 模型推理框架☆64Updated last year
- ☆313Updated last year
- how to learn PyTorch and OneFlow☆479Updated last year
- PaddlePaddle Developer Community☆132Updated last week
- 注释的nano_vllm仓库,并且完成了MiniCPM4的适配以及注册新模型的功能☆147Updated 5 months ago
- Codes & examples for "CUDA - From Correctness to Performance"☆120Updated last year
- learning how CUDA works☆367Updated 10 months ago
- 分层解耦的深度学习推理引擎☆79Updated 11 months ago
- A minimalist and extensible PyTorch extension for implementing custom backend operators in PyTorch.☆38Updated this week
- my cs notes☆57Updated last year
- A CUDA tutorial to make people learn CUDA program from 0☆266Updated last year
- Parallel Prefix Sum (Scan) with CUDA☆28Updated last year
- llm theoretical performance analysis tools and support params, flops, memory and latency analysis.☆114Updated 6 months ago
- 校招、秋招、春招、实习好项目,带你从零动手实现支持LLama2/3和Qwen2.5的大模型推理框架。☆486Updated 2 months ago
- some hpc project for learning☆26Updated last year
- b站上的课 程☆82Updated 2 years ago
- ☆11Updated 4 months ago
- PaddlePaddle Code Convert Toolkit. 『飞桨』深度学习代码转换工具☆121Updated this week
- Tutorials for writing high-performance GPU operators in AI frameworks.☆135Updated 2 years ago
- ☆284Updated this week
- 🤖FFPA: Extend FlashAttention-2 with Split-D, ~O(1) SRAM complexity for large headdim, 1.8x~3x↑🎉 vs SDPA EA.☆246Updated last week
- ☆144Updated last year
- CUDA C 编程权威指南代码实现 包含了书上第二章到第八章的大部分代码实现和作者笔记,全由作者本人手动实现,难免有错误的地方,请大家谨慎参考,非常欢迎对错误的指正。 如果有帮助的话请Star一下,对作者帮助很大,谢谢!☆375Updated 3 years ago
- Course materials for MIT6.5940: TinyML and Efficient Deep Learning Computing☆67Updated last year