ChuanyuXue / The-Purchase-and-Redemption-Forecast-Challenge-baseline
天池“资金流入流出预测——挑战baseline”的解决方案,线上效果143.5
☆98Updated 4 years ago
Related projects ⓘ
Alternatives and complementary repositories for The-Purchase-and-Redemption-Forecast-Challenge-baseline
- My Data Competition Solutions☆102Updated last year
- Sliver Solution (Top 2%) for Kaggle M5 Forecasting competition☆42Updated last month
- 时间序列理论和案例实践☆68Updated 7 years ago
- TensorFlow Probability;Time series model☆123Updated 2 years ago
- 数据竞赛笔记fork☆63Updated last year
- 当样本分布发生变化时,交叉验证无法准确评估模型在测试集上的效果,这时候需要其他构造验证集的方法来应对。☆49Updated 4 years ago
- 2020翼支付风险用户识别 初赛、复赛AB榜Rank1☆57Updated 3 years ago
- DataFountain大赛项目:CCF大数据时代的Serverless工作负载预测☆21Updated 3 years ago
- MXNET之GluonTS学习手册☆25Updated 3 years ago
- 12th Solution: Matrix Factorization for High-Dimensional and Sparse Time Series Prediction☆30Updated 3 years ago
- 第三届 Apache Flink 极客挑战赛暨AAIG CUP——电商推荐“抱大腿”攻击识别亚军代码方案☆28Updated 2 years ago
- 第二届翼支付杯大数据建模大赛-信用风险用户识别Top2☆34Updated 4 years ago
- 本教程独立网站已上线☆210Updated last year
- 1st place solution for the AntaiCup-International-E-commerce-Artificial-Intelligence-Challenge☆179Updated 4 years ago
- 2020数字中国创新大赛—算法赛:智慧海洋建设☆98Updated last year
- 利用Encoder对二分类任务的序列数据进行概率预测☆50Updated 4 years ago
- ☆36Updated 3 years ago
- 使用sklearn做特征工程☆167Updated 6 years ago
- 2019年CCF大数据与计算智能大赛乘用车细分市场销量预测冠军解决方案☆254Updated 4 years ago
- [译]tsfresh特征提取工具可提取的特征☆95Updated 5 years ago
- 2020 招商银行FinTech 数据赛道 rank10☆106Updated 4 years ago
- WSDM2022留存预测挑战赛 第1名解决方案☆93Updated 2 years ago
- 科技战疫-大数据公益挑战赛-DataFountain重点区域人群密度预测 第1名方案☆38Updated 2 years ago
- 2019厦门国际银行“数创金融杯”数据建模大赛☆25Updated 3 years ago
- 2019天池大数据竞赛杭州市地铁流量流入流出预测 成绩27/2319 比赛地址https://tianchi.aliyun.com/competition/entrance/231708/introduction?spm=5176.12281957.1004.6.38b0…☆45Updated 5 years ago
- Bayesian Optimization and Grid Search for xgboost/lightgbm☆65Updated 5 years ago
- 2020腾讯广告算法大赛 Top5 solution. https://algo.qq.com/☆80Updated 3 years ago
- Keras version of LSTNet☆96Updated 5 years ago
- 2020 CCF BDCI 线上第一 解决方案代码☆41Updated 3 years ago
- 利用lightgbm做(learning to rank)排序学习,包括数据处理、模型训练、模型决策可视化、模型可解释性以及预测等。Use LightGBM to learn ranking, including data processing, model trainin…☆260Updated 2 years ago