MitchellX / network-traffic-analysis
基于流量数据的网络应用识别系统设计与实现
☆18Updated 3 years ago
Related projects ⓘ
Alternatives and complementary repositories for network-traffic-analysis
- BUPT SCSS大三小学期 机器学习分析恶意加 密流量包项目☆55Updated 4 years ago
- Use deep learning to classify the malicious traffic, and use TensorFlow2.0 to carry out it.☆32Updated 4 years ago
- 从pcap获取流的基本信息工具☆186Updated last year
- web安全机器学习入门☆11Updated 5 years ago
- IDS abnormal traffic detection tensorflow☆38Updated 5 years ago
- 多进程读取pcap,基于五元组分流并提取流量特征。结果输出为csv文件,用于机器学习中对加密流量进行分类☆77Updated 2 years ago
- 网络流量领域工具库、公开数据集及加密流量解析方法☆40Updated last year
- 🔫基于scapy的SSL/TLS特征提取工具及相应随机森林分类器模型☆19Updated 4 years ago
- 收集了部分将机器学习应用于网络流量分类的论文☆152Updated 4 years ago
- 基于深度学习对dga恶意域名检测研究☆52Updated last year
- 西湖论剑AI大数据安全分析赛 加密恶意流量检测赛道初赛第一名,决赛第二名方案☆18Updated 3 years ago
- 网络异常流量检测系统☆20Updated 4 years ago
- Traffic dataset USTC-TFC2016☆110Updated 5 years ago
- Code of "MalDetect: A Structure of Encrypted Malware Traffic Detection"☆15Updated 5 years ago
- Leveraging machine learning to detect TLS based malware in encrypted traffic without decryption☆39Updated 4 years ago
- The project is to detect malware traffic in TLS flows using ML☆32Updated 4 years ago
- Traffic analysis for Tor-based malware detection and classification☆38Updated last year
- Toolkit for processing PCAP file and transform into image of MNIST dataset☆210Updated 10 months ago
- Flow Interaction Graph based attack traffic detection system.☆136Updated 6 months ago
- Code for “MaMPF: Encrypted Traffic Classification Based on Multi-Attribute Markov Probability Fingerprints”☆18Updated 4 years ago
- ☆128Updated last year
- 基于机器学习的恶意加密流量监测平台☆98Updated 3 years ago
- ☆26Updated 6 years ago
- ☆14Updated 4 years ago
- UCAS春季学期课程 网络空间安全态势感知 加密流量分类中间结果数据集☆18Updated 2 years ago
- 基于网络的入侵检测系统☆60Updated 13 years ago
- Code for Intrusion Detection Systems and Encrypted Traffic Classification [No Further Updates]☆32Updated 3 years ago
- 利用强化学习方法 DQN 生成基于机器学习的恶意流量检测模型☆24Updated 3 years ago
- WEB访问日志分析与入侵检测可视化系统☆18Updated 4 years ago