Kedreamix / pytorch-cppcuda-tutorialLinks
tutorial for writing custom pytorch cpp+cuda kernel, applied on volume rendering (NeRF)
☆29Updated 2 years ago
Alternatives and similar repositories for pytorch-cppcuda-tutorial
Users that are interested in pytorch-cppcuda-tutorial are comparing it to the libraries listed below
Sorting:
- Implement custom operators in PyTorch with cuda/c++☆76Updated 3 years ago
- ☆145Updated last year
- 🤖FFPA: Extend FlashAttention-2 with Split-D, ~O(1) SRAM complexity for large headdim, 1.8x~3x↑🎉 vs SDPA EA.☆248Updated 2 weeks ago
- Tutorials for writing high-performance GPU operators in AI frameworks.☆136Updated 2 years ago
- ☆179Updated 2 years ago
- ⚡️Write HGEMM from scratch using Tensor Cores with WMMA, MMA and CuTe API, Achieve Peak⚡️ Performance.☆148Updated 8 months ago
- CPU Memory Compiler and Parallel programing☆26Updated last year
- Implement Flash Attention using Cute.☆100Updated last year
- 这个项目介绍了简单的CUDA入门,涉及到CUDA执行模型、线程层次、CUDA内存模型、核函数的编写方式以及PyTorch使用CUDA扩展的两种方式。通过该项目可以基本入门基于PyTorch的CUDA扩展的开发方式。☆95Updated 4 years ago
- Examples of CUDA implementations by Cutlass CuTe☆270Updated 7 months ago
- ☆26Updated 5 months ago
- A Survey of Efficient Attention Methods: Hardware-efficient, Sparse, Compact, and Linear Attention☆278Updated 2 months ago
- ☆129Updated 5 months ago
- ☆117Updated 4 months ago
- llm theoretical performance analysis tools and support params, flops, memory and latency analysis.☆115Updated 6 months ago
- 使用 CUDA C++ 实现的 llama 模型推理框架☆64Updated last year
- A tutorial for CUDA&PyTorch☆227Updated last week
- Code base and slides for ECE408:Applied Parallel Programming On GPU.☆143Updated 4 years ago
- Personal Notes for Learning HPC & Parallel Computation [NO LONGER ADDING NEW CONTENT]☆76Updated 3 years ago
- We invite you to visit and follow our new repository at https://github.com/microsoft/TileFusion. TiledCUDA is a highly efficient kernel …☆192Updated last year
- flash attention tutorial written in python, triton, cuda, cutlass☆484Updated 2 weeks ago
- Decoding Attention is specially optimized for MHA, MQA, GQA and MLA using CUDA core for the decoding stage of LLM inference.☆46Updated 7 months ago
- Triton adapter for Ascend. Mirror of https://gitee.com/ascend/triton-ascend☆105Updated last week
- NVIDIA cuTile learn☆154Updated last month
- A light llama-like llm inference framework based on the triton kernel.☆171Updated last month
- Triton Documentation in Chinese Simplified / Triton 中文文档☆102Updated last month
- Codes & examples for "CUDA - From Correctness to Performance"☆121Updated last year
- Code release for book "Efficient Training in PyTorch"☆125Updated 9 months ago
- ☆49Updated last year
- learning how CUDA works☆373Updated 11 months ago