Kedreamix / pytorch-cppcuda-tutorialLinks
tutorial for writing custom pytorch cpp+cuda kernel, applied on volume rendering (NeRF)
☆29Updated 2 years ago
Alternatives and similar repositories for pytorch-cppcuda-tutorial
Users that are interested in pytorch-cppcuda-tutorial are comparing it to the libraries listed below
Sorting:
- Implement custom operators in PyTorch with cuda/c++☆75Updated 2 years ago
- ☆176Updated 2 years ago
- A Survey of Efficient Attention Methods: Hardware-efficient, Sparse, Compact, and Linear Attention☆245Updated last week
- 🤖FFPA: Extend FlashAttention-2 with Split-D, ~O(1) SRAM complexity for large headdim, 1.8x~3x↑🎉 vs SDPA EA.☆235Updated 3 weeks ago
- ☆144Updated last year
- Implement Flash Attention using Cute.☆97Updated 11 months ago
- ☆124Updated 3 months ago
- CPU Memory Compiler and Parallel programing☆26Updated last year
- A tutorial for CUDA&PyTorch☆171Updated 10 months ago
- Tutorials for writing high-performance GPU operators in AI frameworks.☆133Updated 2 years ago
- ⚡️Write HGEMM from scratch using Tensor Cores with WMMA, MMA and CuTe API, Achieve Peak⚡️ Performance.☆135Updated 7 months ago
- Decoding Attention is specially optimized for MHA, MQA, GQA and MLA using CUDA core for the decoding stage of LLM inference.☆45Updated 6 months ago
- Examples of CUDA implementations by Cutlass CuTe☆258Updated 5 months ago
- 注释的nano_vllm仓库,并且完成了MiniCPM4的适配以及注册新模型的功能☆114Updated 4 months ago
- Triton Documentation in Chinese Simplified / Triton 中文文档☆95Updated 2 weeks ago
- Personal Notes for Learning HPC & Parallel Computation [Active Adding New Content]☆75Updated 3 years ago
- SGEMM optimization with cuda step by step☆21Updated last year
- 使用 CUDA C++ 实现的 llama 模型推理框架☆62Updated last year
- llm theoretical performance analysis tools and support params, flops, memory and latency analysis.☆113Updated 5 months ago
- NVIDIA cuTile learn☆69Updated this week
- FastCache: Fast Caching for Diffusion Transformer Through Learnable Linear Approximation [Efficient ML Model]☆45Updated 3 months ago
- PyTorch implementation of PTQ4DiT https://arxiv.org/abs/2405.16005☆41Updated last year
- 这个项目介绍了简单的CUDA入门,涉及到CUDA执行模型、线程层次、CUDA内存模型、核函数的编写方式以及PyTorch使用CUDA扩展的两种方式。通过该项目可以基本入门基于PyTorch的CUDA扩展的开发方式。☆94Updated 4 years ago
- Codes & examples for "CUDA - From Correctness to Performance"☆117Updated last year
- High performance inference engine for diffusion models☆100Updated 3 months ago
- A light llama-like llm inference framework based on the triton kernel.☆166Updated 2 months ago
- A sparse attention kernel supporting mix sparse patterns☆396Updated 9 months ago
- ☆150Updated 5 months ago
- ☆76Updated last year
- Code base and slides for ECE408:Applied Parallel Programming On GPU.☆141Updated 4 years ago