JohanYe / IWAE-pytorchLinks
Simple Importance Weighted Autoencoders (IWAE) implementation in Pytorch
☆14Updated 3 months ago
Alternatives and similar repositories for IWAE-pytorch
Users that are interested in IWAE-pytorch are comparing it to the libraries listed below
Sorting:
- ☆29Updated 3 years ago
- Code for Sliced Gromov-Wasserstein☆69Updated 5 years ago
- Featurized Density Ratio Estimation☆20Updated 4 years ago
- Gaussian Process Prior Variational Autoencoder☆85Updated 6 years ago
- Stochastic algorithms for computing Regularized Optimal Transport☆58Updated 7 years ago
- A PyTorch Implementation of the Importance Weighted Autoencoders☆39Updated 6 years ago
- Implementation of the Sliced Wasserstein Autoencoder using PyTorch☆102Updated 7 years ago
- Sliced Wasserstein Distance for Learning Gaussian Mixture Models☆66Updated 2 years ago
- Python implementation of smooth optimal transport.☆60Updated 4 years ago
- Spatio-temporal alignements: Optimal transport in space and time☆47Updated 5 months ago
- Learning the optimal transport map via input convex neural neworks☆41Updated 5 years ago
- Code for "Variational Autoencoder with Learned Latent Structure"☆34Updated 4 years ago
- Reproducing the paper "Variational Sparse Coding" for the ICLR 2019 Reproducibility Challenge☆62Updated 2 years ago
- ☆13Updated 2 years ago
- Exemplar VAE: Linking Generative Models, Nearest Neighbor Retrieval, and Data Augmentation☆69Updated 4 years ago
- Implementation of different Normalizing Flows, NF, Planar Flows, IAF, etc.☆30Updated 7 years ago
- Implementation of the Gromov-Wasserstein distance to the setting of Unbalanced Optimal Transport☆45Updated 2 years ago
- Learning generative models with Sinkhorn Loss☆30Updated 6 years ago
- A Python implementation of Monge optimal transportation☆49Updated 2 years ago
- MMD, Hausdorff and Sinkhorn divergences scaled up to 1,000,000 samples.☆56Updated 6 years ago
- A set of tests for evaluating large-scale algorithms for Wasserstein-1 transport computation (NeurIPS'22).☆21Updated last year
- Graph matching and clustering by comparing heat kernels via optimal transport.☆27Updated 2 years ago
- Implementation of the MIWAE method for deep generative modelling of incomplete data sets.☆41Updated last year
- Dirichlet Process Mixture Models☆22Updated 9 years ago
- Learning Generative Models across Incomparable Spaces (ICML 2019)☆27Updated 5 years ago
- ☆24Updated 4 years ago
- Official PyTorch BIVA implementation (BIVA: A Very Deep Hierarchy of Latent Variables for Generative Modeling)☆84Updated 2 years ago
- Sinkhorn Barycenters via Frank-Wolfe algorithm☆27Updated 5 years ago
- ☆54Updated last year
- Variational inference for Dirichlet process mixture models with multinomial mixture components.☆35Updated 11 years ago