xqding / Importance_Weighted_AutoencodersLinks
A PyTorch Implementation of the Importance Weighted Autoencoders
☆39Updated 6 years ago
Alternatives and similar repositories for Importance_Weighted_Autoencoders
Users that are interested in Importance_Weighted_Autoencoders are comparing it to the libraries listed below
Sorting:
- Experiments for the Neural Autoregressive Flows paper☆124Updated 4 years ago
- simple implementation of "Improved Variational Inference with Inverse Autoregressive Flow" paper with pytorch☆52Updated 7 years ago
- ☆26Updated 6 years ago
- Implicit Generation and Generalization in Energy Based Models in PyTorch☆65Updated 6 years ago
- Code for "A Spectral Approach to Gradient Estimation for Implicit Distributions" (ICML'18)☆33Updated 2 years ago
- Scalable Training of Inference Networks for Gaussian-Process Models, ICML 2019☆41Updated 2 years ago
- Implementation of the MMD VAE paper (InfoVAE: Information Maximizing Variational Autoencoders) in pytorch☆42Updated 4 years ago
- Scaled MMD GAN☆36Updated 5 years ago
- Variational Autoencoder with Spatial Broadcast Decoder☆35Updated 5 years ago
- PyTorch implementation of Bidirectional Monte Carlo, Annealed Importance Sampling, and Hamiltonian Monte Carlo.☆52Updated 4 years ago
- PyTorch Implementation of Neural Statistician☆60Updated 3 years ago
- Low-variance, efficient and unbiased gradient estimation for optimizing models with binary latent variables. (ICLR 2019)☆28Updated 6 years ago
- Implementation of iterative inference in deep latent variable models☆43Updated 5 years ago
- Reference implementation of divergence triangle https://arxiv.org/abs/1812.10907☆16Updated 2 years ago
- A variational inference method with accurate uncertainty estimation. It uses a new semi-implicit variational family built on neural netwo…☆54Updated 8 months ago
- ☆37Updated 5 years ago
- Official PyTorch BIVA implementation (BIVA: A Very Deep Hierarchy of Latent Variables for Generative Modeling)☆84Updated 2 years ago
- ☆42Updated 6 years ago
- ☆180Updated 5 years ago
- A minimal pytorch implementation of VAE, IWAE, MIWAE☆47Updated 2 years ago
- Implementation of different Normalizing Flows, NF, Planar Flows, IAF, etc.☆28Updated 7 years ago
- Sample code for running deterministic variational inference to train Bayesian neural networks☆100Updated 6 years ago
- Glow and RealNVP with tensorflow 2.0 and tensorflow probability☆31Updated 2 years ago
- A tensorflow implementation of VAE training with Renyi divergence☆31Updated 8 years ago
- Variational Autoencoder for Unsupervised and Disentangled Representation Learning of content and motion features in sequential data (Mand…☆106Updated 6 years ago
- Gaussian Process Prior Variational Autoencoder☆84Updated 6 years ago
- PyTorch implementation of AVF☆45Updated 4 years ago
- Train a Mixture of Factor Analyzers (MFA) / Mixture of Probabilistic PCA (MPPCA) - low-rank-plus-diagonal GMMs using pytorch☆40Updated 2 years ago
- Implementation of the Sliced Wasserstein Autoencoder using PyTorch☆103Updated 6 years ago
- Variational Autoencoders with Gaussian Mixture Latent Space☆36Updated 7 years ago