JakobHavtorn / hvae-ooddLinks
Official source code repository for the ICML 2021 paper "Hierarchical VAEs Know What They Don't Know"
☆31Updated 4 years ago
Alternatives and similar repositories for hvae-oodd
Users that are interested in hvae-oodd are comparing it to the libraries listed below
Sorting:
- Ladder Variational Autoencoders (LVAE) in PyTorch☆92Updated 5 years ago
- Pytorch implementations of generative models: VQVAE2, AIR, DRAW, InfoGAN, DCGAN, SSVAE☆93Updated 5 years ago
- Official PyTorch BIVA implementation (BIVA: A Very Deep Hierarchy of Latent Variables for Generative Modeling)☆85Updated 3 years ago
- Morpho-MNIST: Quantitative Assessment and Diagnostics for Representation Learning (http://jmlr.org/papers/v20/19-033.html)☆91Updated last year
- Gaussian Process Prior Variational Autoencoder☆87Updated 7 years ago
- Disentanglement library for PyTorch☆283Updated 3 years ago
- Exemplar VAE: Linking Generative Models, Nearest Neighbor Retrieval, and Data Augmentation☆69Updated 5 years ago
- ☆149Updated 3 years ago
- Code for Sliced Gromov-Wasserstein☆69Updated 6 years ago
- Implicit Generation and Generalization in Energy Based Models in PyTorch☆68Updated 6 years ago
- Implementation of 'DIVA: Domain Invariant Variational Autoencoders'☆105Updated 6 years ago
- ☆88Updated 4 years ago
- ☆33Updated 6 years ago
- 🧶 Modular VAE disentanglement framework for python built with PyTorch Lightning ▸ Including metrics and datasets ▸ With strongly supervi…☆132Updated 2 years ago
- Stochastic algorithms for computing Regularized Optimal Transport☆58Updated 7 years ago
- Implementation of the Sliced Wasserstein Autoencoder using PyTorch☆101Updated 7 years ago
- Multimodal Mixture-of-Experts VAE☆221Updated 2 years ago
- Reproducing the paper "Variational Sparse Coding" for the ICLR 2019 Reproducibility Challenge☆62Updated 2 years ago
- Code for the paper "Training Normalizing Flows with the Information Bottleneck for Competitive Generative Classification" (2020)☆43Updated last year
- Posterior Network: Uncertainty Estimation without OOD Samples via Density-Based Pseudo-Counts (Neurips 2020)☆78Updated 3 years ago
- Learning Autoencoders with Relational Regularization☆46Updated 5 years ago
- A pytorch implementation of our jacobian regularizer to encourage learning representations more robust to input perturbations.☆129Updated 2 years ago
- PyTorch implementation for the ICLR 2020 paper "Understanding the Limitations of Variational Mutual Information Estimators"☆77Updated 5 years ago
- Mutual Information in Pytorch☆115Updated 2 years ago
- Learning Generative Models across Incomparable Spaces (ICML 2019)☆27Updated 5 years ago
- Distributional Sliced-Wasserstein distance code☆50Updated last year
- Implementation of "Learning latent subspaces in variational autoencoders"☆20Updated 6 years ago
- A Pytorch implementation of the optimal transport kernel embedding☆119Updated 4 years ago
- Quantitative evaluation of disentangled representations☆63Updated 7 years ago
- Simple, extendable, easy to understand Glow implementation in PyTorch☆388Updated 3 years ago