Hsdxm / hisi-yolov5Links
海思设备上部署阉割版yolov5
☆13Updated 4 years ago
Alternatives and similar repositories for hisi-yolov5
Users that are interested in hisi-yolov5 are comparing it to the libraries listed below
Sorting:
- yolov5训练转onnx转caffe工程 直接可用☆23Updated 3 years ago
- yolov5: pytorch->onnx->caffe->hisi3559☆22Updated last year
- 海思nnie跑yolov5☆26Updated 3 years ago
- 基于hisi3559a的yolov5☆37Updated 3 years ago
- yolov5s nnie☆47Updated 4 years ago
- 使用ONNXRuntime部署anchor-free系列的YOLOR,包含C++和Python两种版本的程序☆41Updated 4 years ago
- nanodet_rknn on rk3399pro platform☆17Updated 3 years ago
- 在瑞芯微rockchip的AI芯片rv1109上,利用rknn和opencv库,修改了官方yolov3后处理部分代码Bug,交叉编译yolov3-demo示例后可成功上板部署运行。☆34Updated 4 years ago
- 基于海思3519的YOLOv3例程☆23Updated 4 years ago
- 使用ONNXRuntime部署PicoDet目标检测,包含C++和Python两个版本的程序☆30Updated 3 years ago
- ☆29Updated 3 years ago
- CenterTrack_caffe☆23Updated 5 years ago
- 使用ONNXRuntime部署PP-YOLOE目标检测,支持PP-YOLOE-s、PP-YOLOE-m、PP-YOLOE-l、PP-YOLOE-x四种结构,包含C++和Python两个版本的程序☆21Updated 3 years ago
- Deploy Yolo series algorithms on Hisilicon platform hi3516, including yolov3, yolov5, yolox, etc☆11Updated 3 years ago
- Implementation of YOLO and IOU tracker in C++☆17Updated 3 years ago
- 使用ONNXRuntime部署阿里达摩院开源DAMO-YOLO目标检测,一共包含27个onnx模型,依然是包含了C++和Python两个版本的程序☆35Updated 3 years ago
- 使用OpenCV部署P2PNet人群检测和计数,包含C++和Python两种版本的实现☆55Updated 4 years ago
- 基于rknn的yolov5的cpp实现,包含各种依赖库,是一个完整工程,可直接编译运行☆21Updated 3 years ago
- 海思Hi3559移植YOLO☆13Updated 5 years ago
- 用opencv部署nanodet目标检测,包含C++和Python两种版本程序的实现☆107Updated 4 years ago
- yolov5 nine hi3516 hi3519 object detect real-time☆43Updated 5 years ago
- opencv gpu cuda gstreamer gst-rtsp-server muti-channel-rtsp-stream-server simple demo. 非完整项目,仅供参考。☆34Updated 4 years ago
- caffe train face licenseplate reID action ocr centernet☆23Updated 5 years ago
- YOLOX with NCNN/MNN/TNN/ONNXRuntime C++.☆13Updated 3 years ago
- 使用OpenCV部署FastestDet,包含C++和Python两种版本的程序。模型文件不超过1M☆42Updated 3 years ago
- 借助于Ascend310 AI处理器完成深度学习算法部署任务,应用背景为变电站电力 巡检,基于YOLO v4算法模型对常见电力巡检目标进行检测,并充分利用Ascend310提供的DVPP等硬件支持能力来完成流媒体的传输、处理等任务,并对系统性能做出一定的优化。☆30Updated 4 years ago
- 手摸手 美团 YOLOv6模型训练和TensorRT端到端部署方案教程☆34Updated 3 years ago
- Towards Real-Time Multi-Object Tracking☆29Updated 4 years ago
- 使用ONNXRuntime部署Detic检测2万1千种类别的物体,包含C++和Python两个版本的程序☆17Updated 2 years ago
- 用opencv的dnn模块实现Yolo-Fastest的目标检测☆52Updated 4 years ago