DataXujing / DeepSeek-R1-Android
安卓手机部署DeepSeek-R1 蒸馏的1.5B模型
☆21Updated 3 months ago
Alternatives and similar repositories for DeepSeek-R1-Android
Users that are interested in DeepSeek-R1-Android are comparing it to the libraries listed below
Sorting:
- 高效部署:YOLO X, V3, V4, V5, V6, V7, V8, EdgeYOLO TRT推理 ™️ ,前后处理均由CUDA核函数实现 CPP/CUDA🚀☆49Updated 2 years ago
- YOLOv12 TensorRT 端到端模型加速推理和INT8量化实现☆11Updated 2 months ago
- 这是一个使用opencv读取视频并使用socket进行传输视频画面的脚本文件,相较于调用ffmpeg传输节约了90%的数据量☆11Updated last year
- a simple lightweight large language model pipeline framework.☆25Updated 2 weeks ago
- 手摸手 美团 YOLOv6模型训练和TensorRT端到端部署方案教程☆30Updated 2 years ago
- NVIDIA TensorRT Hackathon 2023复赛选题:通义千问Qwen-7B用TensorRT-LLM模型搭建及优化☆42Updated last year
- 大模型API性能指标比较 - 深入分析TTFT、TPS等关键指标☆17Updated 8 months ago
- 基于rknn的yolov5的cpp实现,包含各种依赖库,是一个完整工程,可直接编译运行☆19Updated 3 years ago
- 使用ONNXRuntime部署PicoDet目标检测,包含C++和Python两个版本的程序☆29Updated 3 years ago
- ☆17Updated last year
- FastSAM 部署版本,便于移植不同平,部署简单、运行速度快。☆18Updated 11 months ago
- a plugin-oriented framework for video structured. 国产程序员请加微信zhzhi78拉群交流。☆20Updated 11 months ago
- 基于yoloV5进行多类别+关键检测,关键点检测主要是计算车辆航向角☆16Updated 2 years ago
- Compare multiple optimization methods on triton to imporve model service performance☆50Updated last year
- 使用onnxruntime部署实时视频帧插值,包含C++和Python两个版本的程序☆25Updated last year
- 使用ONNXRuntime部署阿里达摩院开源DAMO-YOLO目标检测,一共包含27个onnx模型,依然是包含了C++和Python两个版本的程序☆31Updated 2 years ago
- ☆22Updated last year
- ☆19Updated last year
- This project showcases the deployment of the RT-DETR model using ONNXRUNTIME in C++ and Python.☆53Updated 2 years ago
- ☆15Updated last year
- segment-anything based mnn☆35Updated last year
- HunyuanDiT with TensorRT and libtorch☆17Updated 11 months ago
- 全网首发,mmdetection Co-DETR TensorRT端到端推理加速☆30Updated 5 months ago
- SAM and lama inpaint,包含QT的GUI交互界面,实现了交互式可实时显示结果的画点、画框进行SAM,然后通过进行Inpaint,具体操作看readme里的视频。☆47Updated last year
- async inference for machine learning model☆26Updated 2 years ago
- tensorrt sahi yolo 目标检测☆50Updated this week
- paper-read-notes☆11Updated 7 months ago
- yolov11(yolov8)尝试了7种不同的部署方法,并对每种方法的优势进行了简单总结。不同的平台、不同的时耗或CPU占用需求,总有一种方法是适用的。针对想入门部署的也是一个很好的参考学习资料。☆22Updated 3 months ago
- A quick TensorRT deoloyment solution for YOLOv8.☆38Updated last year
- 天池 NVIDIA TensorRT Hackathon 2023 —— 生成式AI模型优化赛 初赛第三名方案☆49Updated last year