xiaqing10 / RKNN_YOLOV5S_CPPLinks
基于rknn的yolov5的cpp实现,包含各种依赖库,是一个完整工程,可直接编译运行
☆21Updated 3 years ago
Alternatives and similar repositories for RKNN_YOLOV5S_CPP
Users that are interested in RKNN_YOLOV5S_CPP are comparing it to the libraries listed below
Sorting:
- nanodet_rknn on rk3399pro platform☆17Updated 3 years ago
- 使用ONNXRuntime部署PicoDet目标检测,包含C++和Python两个版本的程序☆30Updated 3 years ago
- ☆16Updated 4 years ago
- FastSAM 部署版本,便于移植不同平,部署简单、运行速度快。☆22Updated last year
- ☆16Updated 5 years ago
- 使用OpenCV部署L2CS-Net人脸朝向估计,包含C++和Python两个版本的程序,只依赖opencv库就可以运行☆20Updated 2 years ago
- ☆27Updated 3 years ago
- 使用ONNXRuntime部署PP-YOLOE目标检测,支持PP-YOLOE-s、PP-YOLOE-m、PP-YOLOE-l、PP-YOLOE-x四种结构,包含C++和Python两个版本的程序☆21Updated 3 years ago
- yolov5s_ncnn_inference pipeline☆21Updated 4 years ago
- A rknn cpp/c++ inference codebase for yolov5.☆31Updated 4 years ago
- ☆16Updated last year
- yolov5部署☆19Updated 3 years ago
- 使用ONNXRuntime部署阿里 达摩院开源DAMO-YOLO目标检测,一共包含27个onnx模型,依然是包含了C++和Python两个版本的程序☆34Updated 2 years ago
- cpp rotation album,基于cpp eigen实现的3d旋转相册,GAMES101复现内容☆12Updated 3 years ago
- ☆21Updated 2 years ago
- ☆67Updated 3 years ago
- PP-YOLOE行人检测+HRNet人体骨骼关键点检测,使用ONNXRuntime部署,包含C++和Python两个版本的程序☆39Updated 3 years ago
- The rknn2 API uses the secondary encapsulation of the process, which is easy for everyone to call. It is applicable to rk356x rk3588☆46Updated 3 years ago
- ☆22Updated last year
- rknn inference☆47Updated 3 years ago
- 使用TensorRT部署SlowFast模型☆23Updated 3 years ago
- YOLOv5 Quantization Aware Training with TensorRT☆17Updated 2 years ago
- 使用ONNXRuntime部署Detic检测2万1千种类别的物体,包含C++和Python两个版本的程序☆17Updated 2 years ago
- 使用ONNXRuntime部署鲁棒性视频抠图,包含C++和Python两种版本的程序☆46Updated 3 years ago
- 使用ONNXRuntime部署YOLOV7人脸+关键点检测,包含C++和Python两个版本的程序☆52Updated 2 years ago
- yolov7 部署版本,后处理用python语言和C++语言形式进行改写,便于移植不同平台(caffe、onnx、tensorRT、RKNN、Horzion)。☆32Updated 2 years ago
- Implementation of YOLO and IOU tracker in C++☆17Updated 3 years ago
- 使用OpenCV部署CoupledTPS,包含了肖像矫正,不规则边界的图像矩形化,旋转图像矫正,三个模型。依然是包含C++和Python两个版本的程序☆20Updated last year
- 移动端快速人脸检测模型是基于RetinaFace的优化去掉stride8以及stride32和stride16的landmark 在CPU位Intel(R) Pentium(R) CPU G2020 @ 2.90GHz(2900 MHz)的设备中人脸检测可达到40ms/帧☆15Updated 5 years ago
- YOLOX with NCNN/MNN/TNN/ONNXRuntime C++.☆13Updated 3 years ago