AXERA-TECH / OWLVIT-ONNX-AX650-CPPLinks
☆22Updated last year
Alternatives and similar repositories for OWLVIT-ONNX-AX650-CPP
Users that are interested in OWLVIT-ONNX-AX650-CPP are comparing it to the libraries listed below
Sorting:
- ☆10Updated 10 months ago
- An onnx-based quantitation tool.☆71Updated last year
- c++实现的clip推理,模型有一点点改动,但是不大,改动和导出模型的代码可以在readme里找到,模型文件都在Releases里,包括AX650的模型。新增支持ChineseCLIP☆30Updated 5 months ago
- 这是一个使用opencv读取视频并使用socket进行传输视频画面的脚本文件,相较于调用ffmpeg传输节约了90%的数据量☆11Updated last year
- ☆19Updated last year
- yolov5部署☆18Updated 2 years ago
- async inference for machine learning model☆26Updated 2 years ago
- This project showcases the deployment of the RT-DETR model using ONNXRUNTIME in C++ and Python.☆53Updated 2 years ago
- SAM and lama inpaint,包含QT的GUI交互界面,实现了交互式可实时显示结果的画点、画框进行SAM,然后通过进行Inpaint,具体操作看readme里的视频。☆47Updated last year
- Python scripts performing Open Vocabulary Object Detection using the YOLO-World model in ONNX. And Export the ONNX model for AXera's NPU☆12Updated last week
- 跟着Tensorrt_pro学习各种知识☆39Updated 2 years ago
- A collection of pre-compiled, state-of-the-art models in the AXera‘s format☆22Updated 2 years ago
- HunyuanDiT with TensorRT and libtorch☆17Updated last year
- ffmpeg+cuvid+tensorrt+multicamera☆12Updated 5 months ago
- an example of segment-anything infer by ncnn☆121Updated 2 years ago
- 高效部署:YOLO X, V3, V4, V5, V6, V7, V8, EdgeYOLO TRT推理 ™️ ,前后处理均由CUDA核函数实现 CPP/CUDA🚀☆49Updated 2 years ago
- Speed up image preprocess with cuda when handle image or tensorrt inference☆68Updated 3 weeks ago
- NVIDIA TensorRT Hackathon 2023复赛选题:通义千问Qwen-7B用TensorRT-LLM模型搭建及优化☆42Updated last year
- yolov8 旋转目标检测部署,瑞芯微RKNN芯片部署、地平线Horizon芯片部署、TensorRT部署☆26Updated 11 months ago
- 对 tensorRT_Pro 开源项目理解☆21Updated 2 years ago
- rknn inference☆46Updated 3 years ago
- Large Language Model Onnx Inference Framework☆35Updated 4 months ago
- tensorrt yolov7 without onnxparser☆24Updated 2 years ago
- Deploy RT-EDTR with onnx from paddlepaddle framwork and graph cut☆29Updated 2 years ago
- yolov11(yolov8)尝试了7种不同的部署方法,并对每种方法的优势进行了简单总结。不同的平台、不同的时耗或CPU占用需求,总有一种方法是适用的。针对想入门部署的也是一个很好的参考学习资料。☆24Updated 4 months ago
- ☆44Updated 2 years ago
- 使用ONNXRuntime部署PP-YOLOE目标检测,支持PP-YOLOE-s、PP-YOLOE-m、PP-YOLOE-l、PP-YOLOE-x四种结构,包含C++和Python两个版本的程序☆20Updated 2 years ago
- mnn yolo demos.☆75Updated 7 months ago
- ☆15Updated last year
- FastSAM 部署版本,便于移植不同平,部署简单、运行速度快。☆18Updated last year