AXERA-TECH / OWLVIT-ONNX-AX650-CPP
☆22Updated last year
Alternatives and similar repositories for OWLVIT-ONNX-AX650-CPP:
Users that are interested in OWLVIT-ONNX-AX650-CPP are comparing it to the libraries listed below
- An onnx-based quantitation tool.☆71Updated last year
- 对 tensorRT_Pro 开源项目理解☆20Updated 2 years ago
- ☆10Updated 9 months ago
- ☆19Updated last year
- 这是一个使用opencv读取视频并使用socket进行传输视频画面的脚本文件,相较于调用ffmpeg传输节约了90%的数据量☆11Updated 11 months ago
- This project showcases the deployment of the RT-DETR model using ONNXRUNTIME in C++ and Python.☆52Updated 2 years ago
- 高效部署:YOLO X, V3, V4, V5, V6, V7, V8, EdgeYOLO TRT推理 ™️ ,前后处理均由CUDA核函数实现 CPP/CUDA🚀☆49Updated 2 years ago
- SAM and lama inpaint,包含QT的GUI交互界面,实现了交互式可实时显示结果的画点、画框进行SAM,然后通过进行Inpaint,具体操作看readme里的视频。☆47Updated last year
- c++实现的clip推理,模型有一点点改动,但是不大,改动和导出模型的代码可以在readme里找到,模型文件都在Releases里,包括AX650的模型。新增支持ChineseCLIP☆30Updated 4 months ago
- ☆44Updated 2 years ago
- ☆25Updated 4 months ago
- async inference for machine learning model☆26Updated 2 years ago
- Python scripts performing Open Vocabulary Object Detection using the YOLO-World model in ONNX. And Export the ONNX model for AXera's NPU☆12Updated 7 months ago
- ☆16Updated last year
- 跟着Tensorrt_pro学习各种知识☆39Updated 2 years ago
- DETR tensor去除推理过程无用辅助头+fp16部署再次加速+解决转tensorrt 输出全为0问题的新方法。☆12Updated last year
- HunyuanDiT with TensorRT and libtorch☆17Updated 11 months ago
- yolov5部署☆18Updated 2 years ago
- rknn inference☆44Updated 3 years ago
- Speed up image preprocess with cuda when handle image or tensorrt inference☆67Updated last month
- FastSAM 部署版本,便于移植不同平,部署简单、运行速度快。☆18Updated 11 months ago
- ffmpeg+cuvid+tensorrt+multicamera☆12Updated 4 months ago
- 使用ONNXRuntime部署PP-YOLOE目标检测,支持PP-YOLOE-s、PP-YOLOE-m、PP-YOLOE-l、PP-YOLOE-x四种结构,包含C++和Python两个版本的程序☆18Updated 2 years ago
- A Python and C++ library for model encryption and decryption, built on Crypto++, with support for various deep learning frameworks includ…☆44Updated last year
- yolov8 旋转目标检测部署,瑞芯微RKNN芯片部署、地平线Horizon芯片部署、TensorRT部署☆27Updated 11 months ago
- YOLOv5 Quantization Aware Training with TensorRT☆15Updated 2 years ago
- yolov11(yolov8)尝试了7种不同的部署方法,并对每种方法的优势进行了简单总结。不同的平台、不同的时耗或CPU占用需求,总有一种方法是适用的。针对想入门部署的也是一个很好的参考学习资料。☆21Updated 3 months ago
- Using pattern matcher in onnx model to match and replace subgraphs.☆79Updated last year
- tensorrt sahi yolo 目标检测☆46Updated 3 weeks ago
- Llama3 Streaming Chat Sample☆22Updated last year