AXERA-TECH / OWLVIT-ONNX-AX650-CPPLinks
☆23Updated last year
Alternatives and similar repositories for OWLVIT-ONNX-AX650-CPP
Users that are interested in OWLVIT-ONNX-AX650-CPP are comparing it to the libraries listed below
Sorting:
- c++实现的clip推理,模型有一点点改动,但是不大,改动和导出模型的代码可以在readme里找到,模型文件都在Releases里,包括AX650的模型。新增支持ChineseCLIP☆30Updated 2 months ago
- An onnx-based quantitation tool.☆71Updated last year
- ☆27Updated 2 months ago
- SAM and lama inpaint,包含QT的GUI交互界面,实现了交互式可实时显示结果的画点、画框进行SAM,然后通过进行Inpaint,具体操作看readme里的视频。☆50Updated last year
- 高效部署:YOLO X, V3, V4, V5, V6, V7, V8, EdgeYOLO TRT推理 ™️ ,前后处理均由CUDA核函数实现 CPP/CUDA🚀☆49Updated 2 years ago
- 这是一个使用opencv读取视频并使用socket进行传输视频画面的脚本文件,相较于调用ffmpeg传输节约了90%的数据量☆11Updated last year
- ffmpeg+cuvid+tensorrt+multicamera☆12Updated 8 months ago
- ☆20Updated last year
- Python scripts performing Open Vocabulary Object Detection using the YOLO-World model in ONNX. And Export the ONNX model for AXera's NPU☆13Updated last month
- 跟着Tensorrt_pro学习各种知识☆40Updated 2 years ago
- DETR tensor去除推理过程无用辅助头+fp16部署再次加速+解决转tensorrt 输出全为0问题的新方法。☆12Updated last year
- 对 tensorRT_Pro 开源项目理解☆21Updated 2 years ago
- This project showcases the deployment of the RT-DETR model using ONNXRUNTIME in C++ and Python.☆56Updated 2 years ago
- ☆16Updated last year
- FastSAM 部署版本,便于移植不同平,部署简单、运行速度快。☆22Updated last year
- ☆16Updated last year
- This project provides simple code and demonstrates how to use the TensorRT C++ API and ONNX to deploy PaddleOCR text recognition model.☆48Updated 3 years ago
- Deploy RT-EDTR with onnx from paddlepaddle framwork and graph cut☆31Updated 2 years ago
- HunyuanDiT with TensorRT and libtorch☆18Updated last year
- Speed up image preprocess with cuda when handle image or tensorrt inference☆77Updated last month
- async inference for machine learning model☆26Updated 2 years ago
- ☆10Updated last year
- YOLOv5 Quantization Aware Training with TensorRT☆17Updated 2 years ago
- 使用ONNXRuntime部署PP-YOLOE目标检测,支持PP-YOLOE-s、PP-YOLOE-m、PP-YOLOE-l、PP-YOLOE-x四种结构,包含C++和Python两个版本的程序☆21Updated 3 years ago
- 基于rknn的yolov5的cpp实现,包含各种依赖库,是一个完整工程,可直接编译运行☆21Updated 3 years ago
- ☆19Updated 3 years ago
- Try to export the ONNX QDQ model that conforms to the AXERA NPU quantization specification. Currently, only w8a8 is supported.☆11Updated last year
- ☆47Updated 2 years ago
- Large Language Model Onnx Inference Framework☆36Updated 8 months ago
- ☆79Updated last year