DA-southampton / TRM_tutorial
Transformer在CV和NLP领域的变体模型的从零解读:Transformer;VIT;Swin Transformer
☆321Updated 2 years ago
Related projects ⓘ
Alternatives and complementary repositories for TRM_tutorial
- 学习深度学习不如边写代码边学习,实际操作一遍才能理解数据的变换过程,参数的训练过程,这里整合了B站的jupter代码,可以结合着B站的视频边看边练,希望能对大家有帮助。☆125Updated 2 years ago
- Implementation of some unbalanced loss like focal_loss, dice_loss, DSC Loss, GHM Loss et.al☆254Updated last year
- Bert源码阅读与讲解(Pytorch版本)-以BERT文本分类代码为例子☆632Updated 2 years ago
- Z Lab数据实验室开源代码汇总☆198Updated 5 months ago
- A Transformer Framework Based Translation Task☆139Updated 4 months ago
- 此仓库将介绍Deep Learning 所需要的基础知识以及NLP方面的模型原理到项目实操 : )☆175Updated last year
- Natural Language Processing Tutorial for Deep Learning Researchers☆1,075Updated 2 years ago
- 《跟我一起深度学习》☆185Updated 4 months ago
- 记录python,pytorch,git等工具的学习过程,主要是对该工具常用部分进行实践。☆41Updated 2 months ago
- GAIIC赛道一:影像学 NLP — 医学影像诊断报告生成 [A100换你大棚甜瓜 Rank-12 方案]☆57Updated last year
- An implementation of the BERT model and its related downstream tasks based on the PyTorch framework☆564Updated 2 weeks ago
- Chinese-Text-Classification Project including bert-classification, textCNN and so on.☆145Updated 2 years ago
- Datawhale NLP 面筋☆167Updated 3 years ago
- 深度学习/计算机视觉/多模态/机器学习/人工智能零基础理论/实战教程汇总分享☆122Updated 2 years ago
- ☆16Updated last year
- 关于机器学习,深度学习,自然语言处理等各种算法的实现、示例,与博客文章配套,论文复现等☆190Updated 2 years ago
- ☆365Updated 3 years ago
- 超轻量级bert的pytorch版本,大量中文注释,容易修改结构,持续更新☆407Updated 2 years ago
- 自然语言处理学习笔记:机器学习及深度学习原理和示例,基于 Tensorflow 和 PyTorch 框架,Transformer、BERT、ALBERT等最新预训练模型及源代码详解,及基于预训练模型进行各种自然语言处 理任务。模型部署☆346Updated 4 years ago
- 《Python深度学习基于PyTorch》 Deep Learning with Python and PyTorch 作者:吴茂贵 郁明敏 杨本法 李涛 张粤磊 等☆82Updated 2 years ago
- ☆161Updated last year
- ☆627Updated last year
- Gitbook Address: https://app.gitbook.com/@nlpgroup/s/nlpnote/☆154Updated 3 years ago
- 2022微信大数据挑战赛 第8名 方案☆73Updated 2 years ago
- 这里用来存储做人工智能项目的代码和参加数据挖掘比赛的代码☆72Updated last month
- Hugging Face Transformers Course 笔记☆38Updated 2 years ago
- 开源的各大比赛baseline☆376Updated 2 years ago
- 本课程面对具有一定机器学习基础,但尚未入门的NLPer或经验尚浅的NLPer,尽力避免陷入繁琐枯燥的公式讲解中,力求用代码展示每个模型背后的设计思想,同时也会带大家梳理每个模块下的技术演变,做到既知树木也知森林。☆82Updated 11 months ago
- ⭐⭐⭐FightingCV Paper Reading, which helps you understand the most advanced research work in an easier way 🍀 🍀 🍀☆800Updated last year
- 龙曲良《PyTorch深度学习》学习笔记及代码☆50Updated last year