Chentingz / LSB-SteganographyLinks
基于LSB隐写术将文本隐藏于320x240的灰度图像
☆20Updated 5 years ago
Alternatives and similar repositories for LSB-Steganography
Users that are interested in LSB-Steganography are comparing it to the libraries listed below
Sorting:
- 🦄Python 实现LSB算法进行信息隐藏 包含空域与变换域 JPEG信息隐藏算法 对PDF文件进行信息隐藏 基于卷积神经网络的隐写分析 Matlab SRM、SCA隐写分析☆174Updated 5 years ago
- ☆13Updated 2 years ago
- The source code of paper "An Embedding Cost Learning Framework Using GAN"☆34Updated 5 years ago
- 本科毕业设计,实现图像隐写分析以及隐写去除,其中隐写分析采用SRNet网络模型,隐写去除采用DDSP网络模型☆69Updated 3 years ago
- 没有图像隐写检测代码 【针对nsF5 UERD J-UNIWARD 】(未完成)☆22Updated 2 years ago
- Implementation of several Steganography and steganalysis techniques.☆48Updated last year
- These are the codes for paper "Learning to Generate Steganographic Cover for Audio Steganography using GAN"☆15Updated 4 years ago
- ☆11Updated 6 months ago
- 收集了人工智能在网络安全领域的比赛、应用案例和博客。☆22Updated 5 years ago
- 深度隐写术☆17Updated 4 years ago
- 🍿️some awesome Steganalysis☆38Updated 7 years ago
- ☆26Updated 4 years ago
- 对抗样本☆270Updated 2 years ago
- 武大信息隐藏实验☆17Updated 2 years ago
- 数字水印project,基于DWT的图像水印项目☆10Updated 2 years ago
- A pytorch implementation of Deep Residual Network for Steganalysis of Digital Images (SRNet)☆95Updated 2 years ago
- ☆11Updated 3 years ago
- An implementation of S-UNIWARD steganography in python☆22Updated 4 years ago
- ☆25Updated 5 years ago
- 使用pytorch实现FGSM☆31Updated 4 years ago
- “秘隐”-图像隐写系统,基于隐写算法完成文本信息的隐藏与提取、单张图片的隐藏与提取,并基于PyQt5完成了项目的可视化界面演示,用于信息的安全保护。☆46Updated 3 years ago
- A pytorch implementation of Structural Design of Convolutional Neural Networks for Steganalysis (Xunet)☆33Updated 3 years ago
- My implementation of y-DCGAN,which can automatically learn embedding change probability for digital images.☆10Updated 7 years ago
- List for learning image steganography☆30Updated last year
- Image steganography usings Generative Adverserial Networks☆41Updated 11 months ago
- Simple PyTorch implementations of Badnets on MNIST and CIFAR10.☆184Updated 2 years ago
- 本科毕业设计,参考LENET-5模型,将恶意软件转化为灰度图,通过卷积神经网络实现了恶意软件检测分类,准确率达98%。☆24Updated 5 years ago
- 这是作者恶意代码分析、网络安全、系统安全等系列教程,主要是通过机器学习、人工智能和深度学习来分析恶意代码的在线笔记。希望对您有所帮助,学无止境,一起加油。☆103Updated 5 years ago
- 对抗样本(Adversarial Examples)和投毒攻击(Poisoning Attacks)相关资料☆117Updated 6 years ago
- Provably Secure Steganography in Practice Based on “Distribution Copies”☆39Updated 3 months ago