CarryChang / litNlp
litNlp 是基于 Tensorflow2.0 实现的一个轻量级的深度情感极性分析库,可以实现细粒度的多级别情感极性训练和预测,是搭建情感分析和文本分类模型的快速方案,具体应用如:民宿顾客意见挖掘,见右边的链接。
☆17Updated last year
Alternatives and similar repositories for litNlp:
Users that are interested in litNlp are comparing it to the libraries listed below
- 基于字符级卷积神经网络的细粒度的中文情感分析以及具体的应用,将顾客打分和评论情感进行两极映射,使用数据自动标注和基于弱监督预训练的数据增强方式自动扩充和优化数据集,实验证实了在情感分类中,使用本文的字符级卷积神经网络(C-CNN-SA)可以在不依赖分词的情况下,达到的精度和…☆42Updated 5 years ago
- 一个BERT+BiLSTM的情感分析 BaseLine☆25Updated 4 years ago
- 该库是一个项目集,包括文本分类、多标签分类、细粒度情感分析、命名实体识别,以及部分数据集等☆195Updated 5 years ago
- 自然语言处理NLP在中文文本上的一些应用,如文本分类、情感分析、命名实体识别等☆209Updated 3 years ago
- bert文本分类,ner, albert,keras_bert,bert4keras,kashgari,fastbert,flask + uwsgi + keras部署模型,时间实体识别,tfidf关键词抽取,tfidf文本相似度,用户情感分析☆194Updated 5 months ago
- 本项目的数据来自“互联网新闻情感分析”赛题。基于Transformer2.0库中的中文Bert模型,对新闻语料进行三分类。☆106Updated 5 years ago
- 基于bert的中文自然语言处理工具,包括情感分析、中文分词、词性标注、以及命名实体识别功能,并提供文本分类任务、序列标注任务、句对关系判断任务的训练与预测接口☆129Updated 5 years ago
- 京东评论情感分析模型,主要包括1、数据获取及探索性分析;2、文本预处理、文本分词、文本向量化、特征提取、☆79Updated 5 years ago
- “互联网新闻情感分析”赛题,是CCF大数据与计算智能大赛赛题之一。对新闻情绪进行分类,0代表正面情绪、1代表中性情绪、2代表负面情绪。☆138Updated 5 years ago
- gensim-word2vec+svm文本情感分析☆102Updated 7 years ago
- 对舆情事件进行词云展示,对评论进行情感分析和观点抽取。情感分析基于lstm 的三分类,观点抽取基于AP 算法的聚类和MMR的抽取☆179Updated 6 years ago
- 中文商品评论短文本分类器,可用于情感分析☆352Updated 3 years ago
- 使用Python进行自然语言处理相关实践,如新词发现,主题模型,隐马尔模型词性标注,Word2Vec,情感分析☆51Updated 5 years ago
- 中文情感分析模型,包含各种主流的情感词典、机器学习、深度学习、预训练模型方法☆94Updated 5 years ago
- 细粒度用户评论情感分析☆121Updated 6 years ago
- 中文语料库:包括情感词典 情感分析 文本分类 单轮对话 中文词典 知乎☆117Updated 6 years ago
- 基于python gensim 库的LDA算法 对中文进行文本分析,很难得,网上都是英文的,基本上没有中文的,需要安装jieba分词进行分词,然后去除停用词最后才能使用LDA☆133Updated 5 years ago
- 基于LSTM网络与自注意力机制对中文评论进行细粒度情感分析☆55Updated 3 years ago
- 文本分类是指在给定分类体系下 , 根据文本的内容自动确定文本类别的过程。首先我们根据scrapy爬虫根据中国知网URL的规律,爬取70多万条2014年公开的发明专利,然后通过数据清洗筛选出了60多万条含标签数据。通过TF-IDF对60多万条本文进行词频提取,依照词频排序提取…☆107Updated 6 years ago
- 以nlp中情感分析为例,从没有打过标签的语料开始一步步教你怎么去打标签,然后分别以传统的机器学习模型SVM和深度学习模型LSTM去建模。☆33Updated 5 years ago
- 自然语言处理中的基础任务,包含但不限于文本表示,文本分类,命名实体识别,关系抽取,文本生成,文本摘要等,基于tensorflow2或Pytorch,所有代码均经过测试,项目中也包含相关数据。☆139Updated 2 years ago
- 细粒度的情感分析(属性词提取,句法依存分析)☆35Updated last year
- LSTM,TextCNN,fastText情感分析,模型用 tf_serving 和 flask 部署成web应用☆41Updated 5 years ago
- TextClf :基于Pytorch/Sklearn的文本分类框架,包括逻辑回归、SVM、TextCNN、TextRNN、TextRCNN、DRNN、DPCNN、Bert等多种模型,通过简单配置即可完成数据处理、模型训练、测试等过程。☆237Updated last year
- sentiment analysis、情感分析、文本分类、基于字典、python、classification☆130Updated 4 years ago
- Sentiment Classifier base on traditional Maching learning methods, eg Bayes, SVM ,DecisionTree, KNN and Deeplearning method like MLP,CNN,…☆142Updated 6 years ago
- 用MLP、TextCNN、RNN、LSTM、GRU、Attention、RCNN、BERT做文本分类、情感分析,对比各模型于温泉旅游评论垂类语料下在情感分类任务上的表现☆92Updated 3 years ago
- 文本热点挖掘,基于DBSCAN聚类模型,对文本的热点事件进行挖掘☆40Updated 4 years ago
- 基于电影评论数据的中文情感分析(含训练数据、验证数据) Machine Learning and Deep Learning implementations.☆73Updated 2 years ago
- 基于深度学习的中文评论情感分类和智能客服研究与实现。主要是酒店和书店的评论情感分析(二分类+九分类),可以判定积极和消极,对于消极评论,还可以判断其具体类别,比如物流不好或者服务差等等。☆44Updated 4 years ago