CaLlMeErIC / MalConvLinks
使用卷积神经网络识别恶意软件,其特点是把文件的每个字节都当做输入
☆15Updated 10 months ago
Alternatives and similar repositories for MalConv
Users that are interested in MalConv are comparing it to the libraries listed below
Sorting:
- Code for the paper - Malicious URL Detection via Pretrained Language Model-Guided Multi-Level Feature Attention Network☆14Updated last year
- Training Vision Transformers from Scratch for Malware Classification☆29Updated 4 years ago
- PackGenome: Automatically Generating Robust YARA Rules for Accurate Malware Packer Detection☆27Updated last year
- Reproduction of the paper//arxiv.org/pdf/1803.04173.pdf☆18Updated 7 years ago
- 这是作者恶意代码分析、网络安全、系统安全等系列教程,主要是通过机器学习、人工智能和深度学习来分析恶意代码的在线笔记。希望对您有所帮助,学无止境,一起加油。☆102Updated 4 years ago
- 基于深度学习的恶意软件检测研究;MalConv;☆103Updated 3 years ago
- 🔍 "2015 Microsoft Malware Classification Challenge" - Using machine learning to classify malware into different families based on Window…☆28Updated last year
- Code for "MalGraph: Hierarchical Graph Neural Networks for Robust Windows Malware Detection"☆47Updated 3 years ago
- 该资源为安全相关的数据集,包括恶意URL、恶意流量、图像分类、恶意软件等,希望对您有所帮助~☆10Updated 4 years ago
- 使用Bert做embedding,结合BiLSTM做恶意软件的多分类任务☆42Updated 4 years ago
- Official Repository of "Robust Malware Classification via Deep Graph Networks on Call Graph Topologies" (ESANN 2021)☆14Updated 2 years ago
- A curated resource list of adversarial attacks and defenses for Windows PE malware detection.☆71Updated 2 years ago
- Code for Benchmarking two ML Approaches performing Authorship Attribution☆39Updated 3 years ago
- Source code of Malware Classification by Learning Semantic and Structural Features of Control Flow Graphs (TrustCom 2021)☆22Updated 3 years ago
- Defense from the 2020 Microsoft Evasion Competition☆16Updated 4 years ago
- Classifying malware families by converting their binaries to images and then applying Convolutional Neural Network solutions.☆13Updated 3 years ago
- Malware Classification using Machine learning☆72Updated 9 months ago
- Few-Shot malware classification using fused features of static analysis and dynamic analysis (基于静态+动态分析的混合特征的小样本恶意代码分类框架)☆32Updated 3 years ago
- ☆26Updated 6 years ago
- 主题为”基于GAN的恶意软件对抗样本生成“。首先介绍了恶意软件发展现状,引出基于模式匹配、特征空间和问题空间三种方式去检测恶意软件。然后介绍了如何生成对抗样本攻击恶意软件检测器,详细介绍了基于GAN的恶意软件对抗样本的MalGAN框架,并对实验结果进行了对比。最后总结了结构…☆35Updated 4 years ago
- 该资源为恶意代码检测相关的论文或文章总结,包括作者撰写的恶意代码与机器学习、深度学习相关博客,希望对您有所帮助~☆15Updated 5 years ago
- 该资源是各种溯源图相关的论文和资源总结(含PPT),涉及APT攻击检测、入侵检测、流量日志检测、系统安全等领域,希望对大家有所帮助~☆161Updated last year
- The project is to detect malware traffic in TLS flows using ML☆35Updated 5 years ago
- 基于卷积神经网络的恶意软件检测方法☆52Updated 6 years ago
- Enhancing Android Malware Detection with Adversarial Purification against Evasion Attacks☆31Updated 4 months ago
- Leveraging machine learning to detect TLS based malware in encrypted traffic without decryption☆39Updated 5 years ago
- A malware family classification model based on CNN☆25Updated 2 years ago
- Public datasets of malware and benign executable files (Windows EXE files). The dataset can be used by cybersecurity researchers focusing…☆24Updated 2 years ago
- An implementation of the paper "ELF-Miner: Using Structural Knowledge and Data Mining Methods To Detect New (Linux) Malicious Executables…☆15Updated 6 years ago
- DataCon大数据安全分析大赛,2019年方向二(恶意代码检测)冠军源码、2020年方向五(恶意代码分析)季军源码☆106Updated 4 years ago