AXERA-TECH / ONNX-YOLO-World-Open-Vocabulary-Object-Detection
Python scripts performing Open Vocabulary Object Detection using the YOLO-World model in ONNX. And Export the ONNX model for AXera's NPU
☆12Updated 7 months ago
Alternatives and similar repositories for ONNX-YOLO-World-Open-Vocabulary-Object-Detection:
Users that are interested in ONNX-YOLO-World-Open-Vocabulary-Object-Detection are comparing it to the libraries listed below
- DETR tensor去除推理过程无用辅助头+fp16部署再次加速+解决转tensorrt 输出全为0问题的新方法。☆12Updated last year
- Quantize yolov5 using pytorch_quantization.🚀🚀🚀☆14Updated last year
- ☆22Updated last year
- 使用NCNN推理框架和ByteTrack目标跟踪框架,对网络、文件流URL进行实时性视频推理,而UI界面则由Qt框架实现☆21Updated 6 months ago
- FastSAM 部署版本,便于移植不同平,部署简单、运行速度快。☆18Updated 11 months ago
- ☆10Updated 9 months ago
- 使用ONNXRuntime部署PP-YOLOE目标检测,支持PP-YOLOE-s、PP-YOLOE-m、PP-YOLOE-l、PP-YOLOE-x四种结构,包含C++和Python两个版本的程序☆18Updated 2 years ago
- ☆25Updated 4 months ago
- yolov11(yolov8)尝试了7种不同的部署方法,并对每种方法的优势进行了简单总结。不同的平台、不同的时耗或CPU占用需求,总有一种方法是适用的。针对想入门部署的也是一个很好的参考学习资料。☆21Updated 3 months ago
- yolov8 旋转目标检测部署,瑞芯微RKNN芯片部署、地平线Horizon芯片部署、TensorRT部署☆27Updated 11 months ago
- ☆16Updated last month
- 对 tensorRT_Pro 开源项目理解☆20Updated 2 years ago
- ffmpeg+cuvid+tensorrt+multicamera☆12Updated 4 months ago
- ☆15Updated last year
- Quantize yolov7 using pytorch_quantization.🚀🚀🚀☆10Updated last year
- 这是一个使用opencv读取视频并使用socket进行传输视频画面的脚本文件,相较于调用ffmpeg传输节约了90%的数据量☆11Updated 11 months ago
- 使用ONNXRuntime部署DeDoDe:"局部特征匹配:检测,不要描述——描述,不要检测"。依然是C++和Python两个版本的程序☆22Updated last year
- 基于rknn的yolov5的cpp实现,包含各种依赖库,是一个完整工程,可直接编译运行☆19Updated 3 years ago
- The rknn2 API uses the secondary encapsulation of the process, which is easy for everyone to call. It is applicable to rk356x rk3588☆45Updated 2 years ago
- NanoTrack(@HonglinChu), C++ TensorRT deployment. MAX 250 FPS!☆24Updated last year
- yolov8seg 瑞芯微 rknn 板端 C++部署,使用平台 rk3588。☆24Updated last year
- tensorrt yolov7 without onnxparser☆24Updated 2 years ago
- 分别使用OpenCV、ONNXRuntime部署CenterNet目标检测,包含C++和Python两个版本的程序☆9Updated 2 years ago
- ☆23Updated 2 years ago
- ☆27Updated 3 years ago
- A unified and extensible pipeline for deep learning model inference with C++. Now support yolov8, yolov9, clip, and nanosam. More models …☆12Updated last year
- Nanodet with mosaic and mixup☆13Updated 4 years ago
- ☆15Updated last year
- YoloV10 NPU for the RK3566/68/88☆14Updated 10 months ago
- ☆20Updated last year