Abandon-ht / m3axpi_model
☆23Updated last year
Alternatives and similar repositories for m3axpi_model:
Users that are interested in m3axpi_model are comparing it to the libraries listed below
- The rknn2 API uses the secondary encapsulation of the process, which is easy for everyone to call. It is applicable to rk356x rk3588☆45Updated 2 years ago
- linux bsp app & sample for axpi (ax620a)☆34Updated last year
- 使用NCNN推理框架和ByteTrack目标跟踪框架,对网络、文件流URL进行实时性视频推理,而UI界面则由Qt框架实现☆21Updated 6 months ago
- Python scripts performing Open Vocabulary Object Detection using the YOLO-World model in ONNX. And Export the ONNX model for AXera's NPU☆12Updated 7 months ago
- ☆22Updated last year
- DDK for Rockchip NPU☆61Updated 4 years ago
- ppstructure deploy by ncnn☆32Updated 9 months ago
- A collection of pre-compiled, state-of-the-art models in the AXera‘s format☆22Updated 2 years ago
- ☆10Updated 9 months ago
- rknn inference☆44Updated 3 years ago
- 使用ONNXRuntime部署Detic检测2万1千种类别的物体,包含C++和Python两个版本的程序☆17Updated last year
- 对 tensorRT_Pro 开源项目理解☆20Updated 2 years ago
- c++ version of yolov7-mask with ncnn☆58Updated 2 years ago
- yolov5 nine hi3516 hi3519 object detect real-time☆42Updated 4 years ago
- 海思nnie跑yolov5☆26Updated 2 years ago
- SAM and lama inpaint,包含QT的GUI交互界面,实现了交互式可实时显示结果的画点、画框进行SAM,然后通过进行Inpaint,具体操作看readme里的视频。☆47Updated last year
- 在瑞芯微rockchip的AI芯片rv1109上,利用rknn和opencv库,修改了官方yolov3后处理部分代码Bug,交叉编译yolov3-demo示例后可成功上板部署运行。☆34Updated 3 years ago
- RK3588 Debian11环境下实现yolov5-face的推理实现,包括Python和C++实现。主要依赖RKNPU2 SDK和rknn_toolkit_lite2☆17Updated 11 months ago
- c++实现的clip推理,模型有一点点改动,但是不大,改动和导出模型的代码可以在readme里找到,模型文件都在Releases里,包括AX650的模型。新增支持ChineseCLIP☆30Updated 4 months ago
- RKNN模型推理部署模板☆21Updated last year
- ncnn qt yolov6☆11Updated 2 years ago
- ☆64Updated 2 years ago
- ☆16Updated last month
- 基于hisi3559a的yolov5☆36Updated 3 years ago
- PP-PicoDet-Android-Demo☆30Updated 3 years ago
- ☆16Updated last year
- 基于海思3519的YOLOv3例程☆22Updated 4 years ago
- yolov5s_ncnn_inference pipeline☆21Updated 4 years ago
- ☆25Updated 4 months ago
- 高效部署:YOLO X, V3, V4, V5, V6, V7, V8, EdgeYOLO TRT推理 ™️ ,前后处理均由CUDA核函数实现 CPP/CUDA🚀☆49Updated 2 years ago