2019ChenGong / Functional-Analysis
☆118Updated 3 years ago
Related projects ⓘ
Alternatives and complementary repositories for Functional-Analysis
- A lecture note for understanding deep learning☆210Updated last week
- 数学系本科三年级《最优化理论与方法》☆156Updated 3 years ago
- learning fomula☆279Updated 3 years ago
- Codes and Solutions of "Numerical Linear Algebra by Trefethen"☆14Updated last year
- A MATLAB plugin for automatic beautification of data plots (.fig)☆81Updated 2 years ago
- 以现在人的努力程度之低,还谈不到拼天赋的时候☆85Updated 6 years ago
- 张量计算系列教程 (Tensor Computations Tutorials)☆102Updated 9 months ago
- Notes and homework answers for Math, Prob and Stat courses at USTC☆52Updated 4 years ago
- 《Machine Learning: A Probabilistic Perspective》(Kevin P. Murphy)中文翻译和书中算法的Python实现。☆564Updated 7 months ago
- ☆22Updated 4 years ago
- 白板推导系列课程笔记 初版☆496Updated 3 years ago
- 高斯过程回归☆75Updated 2 years ago
- Course resource for the optimization algorithm course in spring 2021. The course is lectured by prof. Zhouwang Yang.☆17Updated 2 years ago
- Providing codes (including Matlab and Python) for visualizing numerical experiment results.☆202Updated 5 years ago
- 数学学习书籍☆39Updated last year
- ☆59Updated 2 years ago
- 最优化方法及其MATLAB实现 源代码☆41Updated 3 years ago
- ☆14Updated last year
- This is a repository of the supplementary implementation for the 2022 summer course 'Mathematical Theory and Applications of Deep Learnin…☆44Updated 2 years ago
- Matlab code for the Limited-memory BFGS (Broyden–Fletcher–Goldfarb–Shanno) algorithm☆30Updated 7 years ago
- 2019秋季学期泛函分析笔记QAQ☆53Updated 2 years ago
- 西安交通大学学位论文模板(LaTeX)(适用硕士、博士学位)An official LaTeX template for Xi'an Jiaotong University degree thesis (Chinese and English)☆235Updated 3 months ago
- 《神经网络与深度学习》课后习题答案-分享讨论☆710Updated 4 years ago
- This is a note on matrix derivatives and described my own experience in detail. Hope you'll like it.☆554Updated 5 years ago
- A Note for Machine Learning Algorithms☆81Updated last year
- A pack of reinforcement learning algorithms.☆81Updated 3 years ago
- Based on M.E.Tipping. Sparse Bayesian Learning and the Relevance Vector Machine. JMLR, 1:211-244, 2001☆23Updated 8 years ago
- 梯度下降与Levenberg-Marquardt算法的比较。Comparison of gradient descent and Levenberg–Marquardt algorithm. Сравнение алгоритма градиентного спуска и…☆31Updated 4 years ago
- code to show F-Principle in the DNN training☆59Updated 2 years ago