zhen8838 / Statistical-Learning-Method
统计学习方法(第二版)
☆16Updated last year
Related projects ⓘ
Alternatives and complementary repositories for Statistical-Learning-Method
- 🔨🔨🔨Tool for making model training data set☆18Updated last week
- Mathematica non est instrumentum sed ideum.☆38Updated 2 years ago
- 一个面向小白的大模型应用开发课程☆48Updated last year
- NumPy实现类PyTorch的动态计算图和神经网络框架(MLP, CNN, RNN, Transformer)☆74Updated 4 months ago
- 📚「@MaiweiAI」Studying papers in the fields of computer vision, NLP, and machine learning algorithms every week.☆75Updated 5 months ago
- 关于Transformer模型的最简洁pytorch实现,包含详细注 释☆162Updated last year
- 大模型/LLM推理和部署理论与实践☆74Updated this week
- 模型压缩的小白入门教程☆22Updated 4 months ago
- 我的Datawhale组队学习,在线阅读地址:https://relph1119.github.io/my-team-learning☆61Updated 8 months ago
- unify-easy-llm(ULM)旨在打造一个简易的一键式大模型训练工具,支持Nvidia GPU、Ascend NPU等不同硬件以及常用的大模型。☆36Updated 3 months ago
- run ChatGLM2-6B in BM1684X☆48Updated 8 months ago
- Datawhale论文分享,阅读前沿论文,分享技术创新☆42Updated 7 months ago
- 《自然语言处理:大模型理论与实践》配套数据和代码☆34Updated last month
- 大模型技术栈一览☆63Updated last month
- Music large model based on InternLM2-chat.☆21Updated 3 months ago
- 模型压缩的小白入门教程☆187Updated this week
- AI算法工程师手册 作者网站http://www.huaxiaozhuan.com/☆26Updated 5 years ago
- Datawhale自研数据标注工具☆64Updated 6 months ago
- 基于pytorch的目标检测数据增强工具包。☆13Updated 3 years ago
- 记录本校高等概率论课程笔记☆30Updated 5 years ago
- 解剖深度学习原理, 从0实现深度学习库!Anatomy of the Deep Learning Principle,Implementing Deep Learning Libraries from 0☆35Updated last year
- These are open and classic books for computer version engineers, it can help us from entry to practice.☆51Updated 2 years ago
- 天池 NVIDIA TensorRT Hackathon 2023 —— 生成式AI模型优化赛 初赛第三名方案☆47Updated last year
- 水很深的深度学习☆125Updated 7 months ago
- 看图学大模型☆175Updated 3 months ago
- Tutorials for writing high-performance GPU operators in AI frameworks.☆122Updated last year
- Pytorch自动混合精度训练模板☆17Updated 2 years ago
- 全中文的人工智能教程和推荐资料,只选“精品”,如“钻石”般精致。☆101Updated 3 years ago
- GPU集群管理平台(GPU Cluster Management Platform)☆34Updated 3 years ago
- 深度学习500问,以问答形式对常用的概率知识、线性代数、机器学习、深度学习、计算机视觉等热点问题进行阐述,以帮助自己及有需要的读者。 全书分为18个章节,50余万字。声明:所有内容来自(仅供学习):https://github.com/scutan90/DeepLearni…☆39Updated 5 years ago
- 一个很小很小的RAG系统☆63Updated 2 months ago