zhangbincheng1997 / detect-lstm-modelLinks
detect malicious URL and Request (Bi-LSTM、Bi-LSTM + CNN、CNN + Bi-LSTM、CNN + Bi-LSTM + CNN)
☆60Updated 6 years ago
Alternatives and similar repositories for detect-lstm-model
Users that are interested in detect-lstm-model are comparing it to the libraries listed below
Sorting:
- 用TensorFlow搭建CNN/RNN/LSTM/GRU/BiRNN/BiLSTM/BiGRU/Capsule Network等deep learning模型☆59Updated 7 years ago
- [ICMLC 2018] A Neural Network Architecture Combining Gated Recurrent Unit (GRU) and Support Vector Machine (SVM) for Intrusion Detection☆172Updated 2 years ago
- attention-based LSTM/Dense implemented by Keras☆300Updated 7 years ago
- 由时间空间成对组成的轨迹序列,通过循环神经网络lstm,自编码器auto-encode,时空密度聚类st-dbscan做异常检测☆74Updated 6 years ago
- 时间序列异常检测☆55Updated 6 years ago
- Attention-based bidirectional LSTM for Classification Task (ICASSP)☆116Updated 2 years ago
- KDD CUP 2021 Multi-dataset Time Series Anomaly Detection☆29Updated 4 years ago
- 异常检测☆21Updated 2 years ago
- ☆16Updated 3 years ago
- 异常检测☆163Updated 6 years ago
- the DL methods used are : DNN, CNN, LSTM, GRU, CNN-LSTM, CNN-GRU, CNN-BiLSTM, CNN-BiGRU, the dataset used is : imbalanced NSL-KDD (KDDTra…☆47Updated 3 years ago
- 机器学习的特征工程,包括特征抽取、特征预处理、特征选择、特征降维。☆25Updated 6 years ago
- 基于Keras的LSTM多变量时间序列预测☆185Updated 7 years ago
- BiLSTM with Multi-Headed Self Attention for sentiment classification of Twitter data, implemented in Keras and PyTorch.☆27Updated 4 years ago
- ☆147Updated 5 years ago
- I have tried some of the machine learning and deep learning algorithm for IDS 2017 dataset. The link for the dataset is here: http://www.…☆42Updated 7 years ago
- clean data ,feature selection , svm based kdd99☆26Updated 6 years ago
- Using K-NN, SVM, Bayes, LSTM, and multi-variable LSTM models on time series forecasting☆52Updated 6 years ago
- 基于KNN聚类算法结合Dynamic Time Warping(动态时间调整)的时间序列分类☆63Updated 6 years ago
- 客流量时间序列预测模型☆129Updated 3 years ago
- 文本分类, 双向lstm + attention 算法☆90Updated 5 years ago
- Stacked Denoising AutoEncoder☆80Updated 6 years ago
- 建立SARIMA-LSTM混合模型预测时间序列问题。以PM2.5值为例,使用UCI公开的自2013年1月17日至2015年12月31日五大城市PM2.5小时检测数据,将数据按时间段划分,使用SARIMA过滤其线性趋势,再对过滤后的残差使用LSTM进行预测,最后对预测结果进行…☆84Updated 6 years ago
- 时间序列ARIMA模型的销量预测☆65Updated 7 years ago
- A PyTorch Tutorials of Sentiment Analysis Classification (RNN, LSTM, Bi-LSTM, LSTM+Attention, CNN)☆329Updated 2 years ago
- 使用极端值理论(Extreme Value Theory)实现阈值动态自动化设置☆97Updated 7 years ago
- ☆117Updated 7 years ago
- 一种时间序列突变检验算法☆17Updated 8 years ago
- Oversampling for imbalanced learning based on k-means and SMOTE☆129Updated 4 years ago
- 时间序列异常检测☆53Updated 3 years ago