yuanzhoulvpi2017 / questionAnswerSystem
基于sentence-transformers实现文本转向量的机器人
☆46Updated 2 years ago
Alternatives and similar repositories for questionAnswerSystem:
Users that are interested in questionAnswerSystem are comparing it to the libraries listed below
- 时间抽取、解析、标准化工具☆50Updated 2 years ago
- benchmark of KgCLUE, with different models and methods☆27Updated 3 years ago
- 中文文本纠错模型,keras实现☆70Updated 3 years ago
- 基于检索的任务型多轮对话☆77Updated 4 years ago
- 介绍docker、docker compose的使用。☆20Updated 4 months ago
- 基于pytorch的百度UIE命名实体识别。☆56Updated last year
- rasa 2.0中文nlu系统搭建☆30Updated 2 years ago
- 🌈 NERpy: Implementation of Named Entity Recognition using Python. 命名实体识别工具,支持BertSoftmax、BertSpan等模型,开箱即用。☆115Updated 10 months ago
- 一个用于训练句子embedding的工具,支持Cosent以及Simcse☆17Updated last month
- SinglepassTextCluster, an TextCluster tools based on Singlepass cluster algorithm that use tfidf vector and doc2vec,which can be used for…☆62Updated 3 years ago
- 基于向量召回的检索式对话系统解决方案,dense retrieval,FAQ……☆33Updated 3 years ago
- 用bert4keras加载CDial-GPT☆38Updated 4 years ago
- 一个基于预训练的句向量生成工具☆134Updated last year
- deep training task☆29Updated last year
- 基于seq2edit (Gector) 的中文文本纠错。☆27Updated 2 years ago
- 中文纠错☆91Updated 2 years ago
- 文本智能校对大赛(Chinese Text Correction)的baseline☆65Updated 2 years ago
- implementation SlotGated SLU model for keras☆34Updated 3 years ago
- 使用EDA技术对小型的不均衡的数据集做增强,验证其效果提升☆9Updated 4 years ago
- 微调预训练语言模型(BERT、Roberta、XLBert等),用于计算两个文本之间的相似度(通过句子对分类任务转换),适用于中文文本☆90Updated 4 years ago
- ☆101Updated 4 years ago
- Minimal keyword extraction with BERT☆79Updated 3 years ago
- 长文本相似度模型☆18Updated last year
- 通用版面分析 | 中文文档解析 |Document Layout Analysis | layout paser☆45Updated 7 months ago
- Rasa通过PaddleNLP提供中文支持☆32Updated 2 years ago
- llama信息抽取实战☆98Updated last year
- RelExt: A Tool for Relation Extraction from Text. 文本实体关系抽取工具。☆48Updated 2 years ago
- GoGPT:基于Llama/Llama 2训练的中英文增强大模型|Chinese-Llama2☆78Updated last year
- using lear to do ner extraction☆29Updated 2 years ago
- 基于 pytorch 的 bert 实现和下游任务微调☆48Updated 2 years ago