CLUEbenchmark / KgCLUEbenchLinks
benchmark of KgCLUE, with different models and methods
☆27Updated 3 years ago
Alternatives and similar repositories for KgCLUEbench
Users that are interested in KgCLUEbench are comparing it to the libraries listed below
Sorting:
- using lear to do ner extraction☆29Updated 3 years ago
- 基于“Seq2Seq+前缀树”的知识图谱问答☆71Updated 3 years ago
- [Unofficial] Predict code for AAAI 2022 paper: Unified Named Entity Recognition as Word-Word Relation Classification☆53Updated 2 years ago
- pytorch Efficient GlobalPointer☆55Updated 3 years ago
- CCKS2020 面向中文短文本的实体链指任务。主要思路为:使用基于BiLSTM和Attention的语义模型进行Query和Doc的文本匹配,再针对匹配度进行pairwise排序,从而选出最优的知识库实体。☆47Updated 4 years ago
- RelExt: A Tool for Relation Extraction from Text. 文本实体关系抽取工具。☆50Updated 3 years ago
- implementation SlotGated SLU model for keras☆34Updated 4 years ago
- A simple implementation of Biaffine NER.☆34Updated 3 years ago
- NLP实验:新词挖掘+预训练模型继续Pre-training☆47Updated last year
- 中文版unilm预训练模型☆83Updated 4 years ago
- ☆57Updated 2 years ago
- ccks金融事件主体抽取☆72Updated 4 years ago
- 使用多头的思想来进行命名实体识别☆33Updated 4 years ago
- 基于pytorch的百度UIE命名实体识别。☆56Updated 2 years ago
- 句子匹配模型,包括无监督的SimCSE、ESimCSE、PromptBERT,和有监督的SBERT、CoSENT。☆99Updated 2 years ago
- The implementation our EMNLP 2021 paper "Enhanced Language Representation with Label Knowledge for Span Extraction".☆114Updated 2 years ago
- 基于Pytorch + BERT的抽取式机器阅读理解☆20Updated 2 years ago
- ☆10Updated 2 years ago
- CTC2021-中文文本纠错大赛的SOTA方案及在线演示☆72Updated last year
- 复习论文《A Frustratingly Easy Approach for Joint Entity and Relation Extraction》☆31Updated 4 years ago
- 用BERT在百度WebQA中文问答数据集上做阅读问答☆65Updated 5 years ago
- 中文多跳问答数据集☆77Updated 6 years ago
- 达观算法比赛ner任务,从重新训练bert,到finetune预测。☆74Updated 2 years ago
- 本项目是CCKS2020实体链指比赛baseline(pytorch)☆19Updated 4 years ago
- ☆87Updated 3 years ago
- 机器检索阅读联合学习,莱斯杯:全国第二届“军事智能机器阅读”挑战赛 rank6 方案☆127Updated 4 years ago
- 基于PaddleNLP开源的抽取式UIE进行医学命名实体识别(torch实现)☆43Updated 2 years ago
- 中文文本纠错模型,keras实现☆74Updated 3 years ago
- 基于span分类和负采样的嵌套实体识别☆14Updated 2 years ago
- This is the official code for paper titled "Exploration and Exploitation: Two Ways to Improve Chinese Spelling Correction Models".☆68Updated 4 years ago