liuhuanyong / SinglepassTextClusterLinks
SinglepassTextCluster, an TextCluster tools based on Singlepass cluster algorithm that use tfidf vector and doc2vec,which can be used for individual real-time corpus cluster task。基于single-pass算法思想的自动文本聚类小组件,内置tfidf和doc2vec两种文本向量方法,可自动输出聚类数目、类簇文档集合和簇类大小,用于自有实时数据的聚类任务。
☆63Updated 3 years ago
Alternatives and similar repositories for SinglepassTextCluster
Users that are interested in SinglepassTextCluster are comparing it to the libraries listed below
Sorting:
- 句子匹配模型,包括无监督的SimCSE、ESimCSE、PromptBERT,和有监督的SBERT、CoSENT。☆99Updated 2 years ago
- 中文无监督SimCSE Pytorch实现☆134Updated 4 years ago
- Pattern-Exploiting Training在中文上的简单实验☆173Updated 4 years ago
- CoSENT、STS、SentenceBERT☆169Updated 5 months ago
- NLP句子编码、句子embedding、语义相似度:BERT_avg、BERT_whitening、SBERT、SmiCSE☆177Updated 3 years ago
- using lear to do ner extraction☆29Updated 3 years ago
- experiments of some semantic matching models and comparison of experimental results.☆162Updated 2 years ago
- ☆56Updated 2 years ago
- 基于 pytorch 的 bert 实现和下游任务微调☆51Updated 2 years ago
- TIANCHI-小布助手对话短文本语义匹配BERT baseline☆32Updated 4 years ago
- 基于SpanBert的中文指代消解,pytorch实现☆99Updated 2 years ago
- ☆32Updated 4 years ago
- 中文数据集下SimCSE+ESimCSE的实现☆192Updated 3 years ago
- 真 · “Deep Learning for Humans”☆141Updated 3 years ago
- ☆87Updated 3 years ago
- ☆40Updated 3 years ago
- 中文bigbird预训练模型☆93Updated 3 years ago
- 基于“Seq2Seq+前缀树”的知识图谱问答☆71Updated 3 years ago
- Knowledge Graph☆174Updated 2 years ago
- chinese version of longformer☆113Updated 4 years ago
- transformers implement (architecture, task example, serving and more)☆95Updated 3 years ago
- 基于GlobalPointer的实体/关系/事件抽取☆147Updated 3 years ago
- ☆128Updated 2 years ago
- 对话改写介绍文章☆97Updated 2 years ago
- 全局指针统一处理嵌套与非嵌套NER☆254Updated 4 years ago
- 实验苏神的CoSENT的Torch实现☆32Updated 3 years ago
- 机器检索阅读联合学习,莱斯杯:全国第二届“军事智能机器阅读”挑战赛 rank6 方案☆128Updated 4 years ago
- ☆91Updated 5 years ago
- CCKS 2020: 基于本体的金融知识图谱自动化构建技术评测☆89Updated 3 years ago
- CCKS2020 面向中文短文本的实体链指任务。主要思路为:使用基于BiLSTM和Attention的语义模型进行Query和Doc的文本匹配,再针对匹配度进行pairwise排序,从而选出最优的知识库实体。☆47Updated 4 years ago