liuhuanyong / SinglepassTextClusterLinks
SinglepassTextCluster, an TextCluster tools based on Singlepass cluster algorithm that use tfidf vector and doc2vec,which can be used for individual real-time corpus cluster task。基于single-pass算法思想的自动文本聚类小组件,内置tfidf和doc2vec两种文本向量方法,可自动输出聚类数目、类簇文档集合和簇类大小,用于自有实时数据的聚类任务。
☆64Updated 4 years ago
Alternatives and similar repositories for SinglepassTextCluster
Users that are interested in SinglepassTextCluster are comparing it to the libraries listed below
Sorting:
- 句子匹配模型,包括无监督的SimCSE、ESimCSE、PromptBERT,和有监督的SBERT、CoSENT。☆100Updated 3 years ago
- experiments of some semantic matching models and comparison of experimental results.☆163Updated last month
- using lear to do ner extraction☆29Updated 3 years ago
- 中文无监督SimCSE Pytorch实现☆135Updated 4 years ago
- CoSENT、STS、SentenceBERT☆171Updated 9 months ago
- 基于SpanBert的中文指代消解,pytorch实现☆102Updated 2 years ago
- NLP句子编码、句子embedding、语义相似度:BERT_avg、BERT_whitening、SBERT、SmiCSE☆179Updated 3 years ago
- ☆129Updated 3 years ago
- ☆57Updated 2 years ago
- Pattern-Exploiting Training在中文上的简单实验☆174Updated 5 years ago
- 基于 pytorch 的 bert 实现和下游任务微调☆54Updated 3 years ago
- Knowledge Graph☆176Updated 3 years ago
- 真 · “Deep Learning for Humans”☆142Updated 4 years ago
- ☆88Updated 4 years ago
- 全局指针统一处理嵌套与非嵌套NER☆257Updated 4 years ago
- 基于GlobalPointer的实体/关系/事件抽取☆150Updated 3 years ago
- 关键词抽取项目☆24Updated 5 years ago
- 中文数据集下SimCSE+ESimCSE的实现☆193Updated 3 years ago
- 收集了目前为止中文领域的MRC抽取式数据集☆122Updated last year
- NLP实验:新词挖掘+预训练模型继续Pre-training☆48Updated 2 years ago
- 基于pytorch的百度UIE命名实体识别。☆56Updated 2 years ago
- 基于 Tensorflow,仿 Scikit-Learn 设计的深度学习自然语言处理框架。支持 40 余种模型类,涵盖语言模型、文本分类、NER、MRC、知识蒸馏等各个领域☆117Updated 2 years ago
- ☆33Updated 4 years ago
- 基于“Seq2Seq+前缀树”的知识图谱问答☆71Updated 3 years ago
- transformers implement (architecture, task example, serving and more)☆96Updated 3 years ago
- A simple implementation of Biaffine NER.☆35Updated 4 years ago
- ☆41Updated 4 years ago
- CCKS2020 面向中文短文本的实体链指任务。主要思路为:使用基于BiLSTM和Attention的语义模型进行Query和Doc的文本匹配,再针对匹配度进行pairwise排序,从而选出最优的知识库实体。☆47Updated 4 years ago
- 机器检索阅读联合学习,莱斯杯:全国第二届“军事智能机器阅读”挑战赛 rank6 方案☆128Updated 5 years ago
- 对话改写介绍文章☆98Updated 2 years ago