yangzhiye / NLPCC2017-task3
NLPCC 2017 task3 article text summary
☆21Updated 7 years ago
Related projects ⓘ
Alternatives and complementary repositories for NLPCC2017-task3
- papers☆18Updated 7 years ago
- LCSTS,ROUGE,short text summarization,NLG,seq2seq☆21Updated 7 years ago
- DMN+ 模型的PyTorch 实现(中文数据集)☆21Updated 5 years ago
- seq2seq+attention model for Chinese textsum☆42Updated 6 years ago
- ☆32Updated 5 years ago
- ELMO在QA问答,文本分类等NLP上面的应用☆15Updated 5 years ago
- 基于ELMo, tensorflow的中文命名实体标注 Chinese Named Entity Recognition Based on ELMo☆22Updated 5 years ago
- 基于transformer的指针生成网络☆92Updated 3 years ago
- WikiQA,复现论文《APPLYING DEEP LEARNING TO ANSWER SELECTION: A STUDY AND AN OPEN TASK》☆28Updated 5 years ago
- code for "Deep Recurrent Generative Decoder for Abstractive Text Summarization"☆53Updated 4 years ago
- Paper notes: Linguistically Regularized LSTM for Sentiment Classification☆7Updated 6 years ago
- textsum for Chinese☆16Updated 6 years ago
- Joint Extraction of Entity Mentions and Relations without Dependency Trees☆21Updated 6 years ago
- 这是一个用于解决生成在生成任务中(翻译,复述等等),多样性不足问题的模型。☆46Updated 5 years ago
- 基于BiLSTM和Self-Attention的文本分类、表示学习网络☆29Updated 5 years ago
- Byte Cup 2018国际机器学习竞赛 23 名(水滴队)代码☆46Updated 5 years ago
- baseline for ccks2019-ipre☆49Updated 5 years ago
- Code for "Autoencoder as Assistant Supervisor: Improving Text Representation for Chinese Social Media Text Summarization"☆137Updated 6 years ago
- 基于BERT的中文命名实体识别(pytorch)☆18Updated 5 years ago
- 2020语言与智能技术竞赛:关系抽取任务(https://aistudio.baidu.com/aistudio/competition/detail/31?lang=zh_CN)☆25Updated 4 years ago
- 基于LDA和TextRank的关键子提取算法实现☆23Updated 7 years ago
- ☆23Updated 5 years ago
- 2019 语言与智能技术竞赛-知识驱动对话 B榜第5名源码和模型☆25Updated 4 years ago
- 基于TensorFlow,seq2seq+attention+beamsearch的文本摘要。☆57Updated 5 years ago
- Adversarial Attack文本匹配比赛☆42Updated 5 years ago
- automatic event extract☆48Updated 6 years ago
- This model base on bert-as-service. Model structure : bert-embedding bilstm crf.☆38Updated 5 years ago
- 2018百度机器阅读理解竞赛☆28Updated 6 years ago
- Coupled Multi-Layer Attentions for Co-Extraction of Aspect and Opinion Terms