foamliu / Reading-ComprehensionLinks
DMN+ 模型的PyTorch 实现(中文数据集)
☆19Updated 6 years ago
Alternatives and similar repositories for Reading-Comprehension
Users that are interested in Reading-Comprehension are comparing it to the libraries listed below
Sorting:
- 莱斯杯:全国第二届“军事智能机器阅读”挑战赛 - Rank7 解决方案☆38Updated 5 years ago
- (2019 法研杯 阅读理解) A pytorch implement of bert joint baseline for machine comprehension task in 2019 cail☆58Updated 2 years ago
- 基于BERT的中文命名实体识别(pytorch)☆17Updated 6 years ago
- 2019 语言与智能技术竞赛-知识驱动对话 B榜第5名源码和模型☆25Updated 5 years ago
- CCKS 2019 Task 2: Entity Recognition and Linking☆94Updated 5 years ago
- 使用BERT解决lic2019机器阅读理解☆89Updated 6 years ago
- ELMO在QA问答,文本分类等NLP上面的应用☆15Updated 6 years ago
- 天池-新冠疫情相似句对判定大赛 Rank8☆52Updated 5 years ago
- Adversarial Attack文本匹配比赛☆42Updated 5 years ago
- 2018年机器阅读理解技术竞赛总结,国内外1000多支队伍中BLEU-4评分排名第6, ROUGE-L评分排名第14。(未ensemble,未嵌入训练好的词向量,无dropout)☆30Updated 6 years ago
- 2019 语言与智能技术竞赛-知识驱动对话 B榜第5名源码和模型☆27Updated 6 years ago
- ☆23Updated 6 years ago
- 2020语言与智能技术竞赛:面向推荐的对话任务☆51Updated 4 years ago
- 2019语言与智能技术竞赛-基于知识图谱的主动聊天☆115Updated 6 years ago
- 2019达观杯信息提取第5名代码☆20Updated 5 years ago
- 2020语言与智能技术竞赛:关系抽取任务(https://aistudio.baidu.com/aistudio/competition/detail/31?lang=zh_CN)☆24Updated 5 years ago
- Final Project for EECS496-7☆62Updated 6 years ago
- 2019达观杯 第六名代码☆43Updated 2 years ago
- Rank2 solution (no-BERT) for 2019 Language and Intelligence Challenge - DuReader2.0 Machine Reading Comprehension.☆127Updated 5 years ago
- First place solution of WSDM CUP 2020, pairwise-bert, lightgbm☆89Updated 5 years ago
- baseline for ccks2019-ipre☆48Updated 5 years ago
- 这是使用pytoch 实现的长文本分类器☆45Updated 6 years ago
- 法研杯CAIL2019阅读理解赛题参赛模型☆42Updated 5 years ago
- this is roberta wwm base distilled model which was distilled from roberta wwm by roberta wwm large☆65Updated 5 years ago
- 完全端到端的核心实体识别与情感预测☆34Updated 6 years ago
- Implementation of the ESIM model for natural language inference with Keras☆28Updated 7 years ago
- 2019百度语言与智能技术竞赛信息抽取赛代5名代码☆69Updated 6 years ago
- CCKS 2018 开放领域的中文问答任务 1st 解决方案☆110Updated 6 years ago
- ☆24Updated 6 years ago
- 这是一个seq2seq模型,编码器是bert,解码器是transformer的解码器,可用于自然语言处理中文本生成领域的任务☆71Updated 5 years ago