circlePi / 2019Cail-A-Bert-Joint-Baseline-for-Machine-Comprehension
(2019 法研杯 阅读理解) A pytorch implement of bert joint baseline for machine comprehension task in 2019 cail
☆58Updated 2 years ago
Alternatives and similar repositories for 2019Cail-A-Bert-Joint-Baseline-for-Machine-Comprehension:
Users that are interested in 2019Cail-A-Bert-Joint-Baseline-for-Machine-Comprehension are comparing it to the libraries listed below
- 法研杯CAIL2019阅读理解赛题参赛模型☆42Updated 5 years ago
- 2019 CAIL 法研杯机器阅读理解挑战赛 第8名 解决方案☆16Updated 5 years ago
- 法研杯2019 阅读理解赛道 top3☆150Updated last year
- 使用BERT解决lic2019机器阅读理解☆89Updated 5 years ago
- Adversarial Attack文本匹配比赛☆42Updated 5 years ago
- DIAC2019基于Adversarial Attack的问题等价性判别比赛☆81Updated 5 years ago
- 2019 语言与智能技术竞赛-知识驱动对话 B榜第5名源码和模型☆25Updated 5 years ago
- 达观算法比赛ner任务,从重新训练bert,到finetune预测。☆75Updated 2 years ago
- 2019达观杯 第六名代码☆44Updated 2 years ago
- 2019百度语言与智能技术竞赛信息抽取赛代5名代码☆69Updated 5 years ago
- 基于BERT的中文命名实体识别(pytorch)☆17Updated 5 years ago
- 机器检索阅读联合学习,莱斯杯:全国第二届“军事智能机器阅读”挑战赛 rank6 方案☆127Updated 4 years ago
- 迭代膨胀卷积命名实体抽取☆45Updated 5 years ago
- baseline for ccks2019-ipre☆48Updated 5 years ago
- Chinese Judicial Reading Comprehension☆31Updated 5 years ago
- Rank2 solution (no-BERT) for 2019 Language and Intelligence Challenge - DuReader2.0 Machine Reading Comprehension.☆127Updated 5 years ago
- 2019 语言与智能技术竞赛-知识驱 动对话 B榜第5名源码和模型☆27Updated 5 years ago
- 莱斯杯:全国第二届“军事智能机器阅读”挑战赛 - Rank7 解决方案☆38Updated 5 years ago
- CLUE baseline pytorch CLUE的pytorch版本基线☆74Updated 4 years ago
- 实现了一下multi-head-selection联合关系实体抽取☆30Updated 5 years ago
- DMN+ 模型的PyTorch 实现(中文数据集)☆20Updated 6 years ago
- 中国中文信息学会社会媒体处理专业委员会举办的2019届中文人机对话之自然语言理解竞赛☆74Updated 4 years ago
- 天池大赛疫情文本挑战赛☆48Updated 4 years ago
- 基于capsule的观点型阅读理解模型☆88Updated 5 years ago
- 2020语言与智能技术竞赛:关系抽取任务(https://aistudio.baidu.com/aistudio/competition/detail/31?lang=zh_CN)☆24Updated 4 years ago
- this is roberta wwm base distilled model which was distilled from roberta wwm by roberta wwm large☆65Updated 4 years ago
- ☆31Updated 5 years ago
- 这是一个用于解决生成在生成任务中(翻译,复述等等),多样性不足问题的模型。☆45Updated 5 years ago
- CCKS 2018 开放领域的中文问答任务 1st 解决方案☆109Updated 5 years ago
- A Sentence Cloze Dataset for Chinese Machine Reading Comprehension (CMRC 2019)☆126Updated 2 years ago