xingwudao / 36
☆161Updated 4 years ago
Alternatives and similar repositories for 36:
Users that are interested in 36 are comparing it to the libraries listed below
- 跟踪计算广告涉及的召回排序模型、特征工程相关的经典论文☆81Updated 4 years ago
- implement fm demo with python☆52Updated 5 years ago
- 推荐系统资料笔记收录/ Everything about Recommendation System. 专题/书籍/论文/产品/Demo☆173Updated 4 years ago
- 基于深度学习的CTR预估,从FM推演各深度学习CTR预估模型(附代码)☆208Updated 6 years ago
- 2018第二届易观算法大赛☆84Updated 5 years ago
- report reading paper list☆92Updated 5 years ago
- Classical RecSys algorithms implemented by using TensorFlow Estimators☆183Updated 6 years ago
- 1st Place Solution for DataCastle-CashBus Competition☆215Updated 8 years ago
- Implement Wide & Deep algorithm by using NumPy☆151Updated 6 years ago
- 推荐系统/计算广告相关仓库,个人博客https://jesse-csj.github.io/☆289Updated 3 years ago
- ☆30Updated 6 years ago
- recommendation system with Youtube Deep Net☆83Updated 6 years ago
- 字节跳动短视频内容理解和推荐 Track2 Top8☆280Updated 5 years ago
- Hybrid model of Gradient Boosting Trees and Logistic Regression (GBDT+LR) on Spark☆88Updated 6 years ago
- ☆171Updated 4 years ago
- 算法相关的各种论文和slides☆42Updated 6 years ago
- A practical movie recommend project based on Item2vec.☆282Updated 4 years ago
- This is a kaggle challenge project called Display Advertising Challenge by CriteoLabs at 2014.这是2014年由CriteoLabs在kaggle上发起的广告点击率预估挑战项目。☆358Updated 5 years ago
- LR, FM, DeepFM, xDeepFM, DIN, CF等推荐算法代码demo。采用TFRecords作为输入,方便实际场景应用。☆103Updated 4 years ago
- Spark SQL 实现 ItemCF,UserCF,Swing,推荐系统,推荐算法,协同过滤☆137Updated 5 years ago
- ☆213Updated 4 years ago
- ☆48Updated 6 years ago
- 基础的深度学习实验研究结果汇 总笔记☆506Updated last year
- ☆196Updated 4 years ago
- 推荐系统从入门到实战☆168Updated 3 years ago
- Multi-thread implementation of Factorization Machines with FTRL for multi-class classification problem which uses softmax as hypothesis.☆70Updated 3 years ago
- ☆101Updated 5 years ago
- keras implementation about Deep Interest Network☆64Updated 5 years ago
- A simple DeepFM.☆101Updated 6 years ago
- JData算法大赛☆31Updated 7 years ago