xiaoqiang765 / backbone
☆14Updated 2 years ago
Alternatives and similar repositories for backbone:
Users that are interested in backbone are comparing it to the libraries listed below
- Implementation Code for the ICCASSP 2023 paper " Efficient Multi-Scale Attention Module with Cross-Spatial Learning" and is available at:…☆231Updated 3 months ago
- 🕹️SCConv: Spatial and Channel Reconstruction Convolution for Feature Redundancy☆303Updated 7 months ago
- A Simple but Effective Downsampling Module For Semantic Segmentation☆109Updated last year
- The official PyTorch implementation of our paper "MCA: Multidimensional collaborative attention in deep convolutional neural networks for…☆59Updated last year
- 可视化特征图教程☆72Updated 3 years ago
- ☆36Updated last year
- 神经网络与深度学习大作业☆17Updated 3 years ago
- Self-attention、Non-local、SE、SK、CBAM、DANet☆469Updated 3 years ago
- fpn_resnet、resnet-se、resnet-cbam☆33Updated 5 years ago
- ☆39Updated last year
- 可视化神经网络☆38Updated 2 years ago
- [TNNLS 2025] TransXNet: Learning Both Global and Local Dynamics with a Dual Dynamic Token Mixer for Visual Recognition☆175Updated last week
- 基于Swin-transformer训练图像分类并部署web端☆89Updated 2 years ago
- ☆298Updated 3 years ago
- 深度学习 注意力机制模块 时间 空间注意力通道☆29Updated last year
- 这是各个主干网络分类模型的源码,可以用于训练自己的分类模型。☆422Updated 2 years ago
- 深度学习中各种即插即用小模块☆380Updated last year
- 这是一个dcgan-pytorch的源码,可以用于训练自己的模型。☆58Updated 2 years ago
- The official pytorch implementation of "SCSA: Exploring the Synergistic Effects Between Spatial and Channel Attention".☆71Updated 3 weeks ago
- The official code of "Rethinking Local Perception in Lightweight Vision Transformer"☆86Updated last year
- ☆144Updated last year
- HiFuse: Hierarchical Multi-Scale Feature Fusion Network for Medical Image Classification☆225Updated 3 months ago
- Official Pytorch implementation of Dual Cross-Attention for Medical Image Segmentation☆128Updated 6 months ago
- [IEEE TIP 2024] DEA-Net: Single image dehazing based on detail-enhanced convolution and content-guided attention☆303Updated 3 months ago
- 多模态数据融合:为了完成多模态数据融合,首先利用VGG16网络和cifar10数据集完成多输入网络的分类,在VGG16的基础之上,将前三层特征提取网络作为不同输入的特征提取网络,在中间层进行特征拼接,后面的卷积层用于提取融合特征,最后加上全连接层。该网络稍作修改就能同时提取…☆88Updated 4 years ago
- ☆60Updated last year
- 细粒度图像分类之十二猫分类,对比ResNet和ViT两者模型性能。☆45Updated 3 years ago
- ☆21Updated 2 years ago
- ☆17Updated 2 years ago
- Source code of the paper: Effective Image Tampering Localization with Multi-Scale ConvNeXt Feature Fusion, JVCIR 2024.☆32Updated last year