xiadanqing / RegressionLinks
回归问题是数据挖掘和机器学习中常常出现的问题----本专题以 中国移动用户信用分预测 为例,对比分析几类 常见的回归算法,包括:线性回归、岭回归、贝叶斯岭回归、前馈神经网络、迭代提升树等。
☆18Updated 6 years ago
Alternatives and similar repositories for Regression
Users that are interested in Regression are comparing it to the libraries listed below
Sorting:
- Python实现经典分类回归、关联分析、聚类以及推荐算法等☆213Updated 6 years ago
- 某电商手机评论的文本挖掘初体验 功能板块:数据预处理、LDA模型获取特征词、情感极性判断与程度计算、回归模型预测销量排序☆123Updated 6 years ago
- 房价预测完整项目:1.爬取链家网数据 2.处理后,用sklearn中几个逻辑回归机器学习模型和keras神经网络搭建模型预测房价 最终结果神经网络效果更好,R^2值0.75左右☆245Updated 7 years ago
- 一些机器学习算法的demo。普通最小二乘法,决策树(Iris鸢尾花数据集),KNN(mnist手写数字数据集),朴素贝叶斯分类西瓜数据集,trec06c数据集垃圾邮件分类(spam),逻辑斯蒂回归,随机梯度下降SGD与全梯度下降的对比,mnist中8和9的二分类,泰坦尼克号…☆191Updated 7 years ago
- 2020年第八届泰迪杯数据挖掘C题“智慧政务文本挖掘”特等奖作品(论文与代码)☆68Updated 5 months ago
- 机器学习实践:贷款违约预测☆39Updated 6 years ago
- 机器学习、深度学习、NLP实战项目☆150Updated 7 years ago
- 利用Logistic回归实现信用卡欺诈检测☆50Updated 4 years ago
- 基于kaggle上Titanic数据集实现的ID3、C4.5、CART和CART剪枝算法☆41Updated 6 years ago
- 【Numpy 手写实现】SVM 支持向量机 | KNN K近邻 | Kmeans | Logistic Regression 逻辑回归 | Maximum Entropy 最大熵 | Naive Bayes 朴素贝叶斯 | Perception 感知机 | Decision…☆216Updated 5 years ago
- 基于TensorFlow的深度学习、深度增强学习代码:NN(传统神经网络)、CNN(卷积神经网络)、RNN(递归神经网络)、LSTM(长短期记忆网络)、GAN(生成对抗网络)、DRL(深度增强学习)☆57Updated 7 years ago
- 本程序实现决策树的建立与可视化,以及决策树的预剪枝与后剪枝,数据集为西瓜书4.2、4.3节中的西瓜数据集☆39Updated 6 years ago
- 近年来,随着微信、微博、市长信箱、阳光热线等网络问政平台逐步成为政府了解民意、汇聚民智、凝聚民气的重要渠道,各类社情民意相关的文本数据量不断攀升,给以往主要依靠人工来进行留言划分和热点整理的相关部门的工作带来了极大挑战。同时,随着大数据技术的发展,建立基于自然语言处理技术的…☆35Updated 5 years ago
- 整理记录本人担任课程助教设计的四个机器学习实验,主要涉及简单的线性回归、朴素贝叶斯分类器、支持向量机、CNN做文本分类。内附实验指导书、讲解PPT、参考代码,欢迎各位码友讨论交流。☆121Updated 7 years ago
- 数据挖掘常用算法:关联分析Apriori算法,数据分类决策树算法,数据聚类K-means算法☆25Updated 6 years ago
- 阿里天池与Datawhale联合举办二手车价格预测比赛:优胜奖方案代码总结☆113Updated 2 years ago
- 软件工程课程设计项目/Lab409:基于词典方法和机基于器学习方法的中文情感倾向分析(Web)☆126Updated 8 years ago
- 朴素贝叶斯实现的文本分类(新闻分类)☆66Updated 10 years ago
- 银行客户流失预警模型☆45Updated 7 years ago
- 2019年CCF智能信用评分大赛个人源码库。包含XGboost模型调参,特征筛选,训练等方案。同时包含stacking模型融合方案☆28Updated 5 years ago
- 基于电影评论数据的中文情感分析(含训练数据、验证数据) Machine Learning and Deep Learning implementations.☆83Updated 3 years ago
- 该工程是利用python3.6进行“特征提取+分类器”来实现美团评论的文本二分类问题。在特征提取部分提取了6种特征,分类器选择了python里面的包xgboost和lightGBM分别实现提升树和GBDT(梯度提升决策树)。☆96Updated 6 years ago
- 基于pytorch进行文本多分类,主要模型为双向LSTM,预测准确率83%☆43Updated 5 years ago
- 使用决策树实现预测人才招聘市场的最低薪酬预测 | C4.5分类 | CART回归 | 剪枝 | 随机森林☆19Updated 6 years ago
- 数据挖掘库sklearn的使用教程和demo☆85Updated 7 years ago
- 使用sklearn做特征工程☆177Updated 7 years ago
- 大家好,我是coggle开源小组成员 庐州小火锅,这篇文章将会介绍天池学习赛贷款违约预测的TOP6单模方案(具体介绍见我的csdn:),现附上比赛链接天池学习赛贷款违约预测.https://tianchi.aliyun.com/competition/entrance/53…☆56Updated 5 years ago
- 人工智能社会保险反欺诈分析☆30Updated 7 years ago
- [大数据课程作业]分别采用神经网络、线性回归、SVM方法预测学生成绩☆48Updated 7 years ago
- 智慧物流算法大赛简介: 根据包括货值、路程和油价等字段的数据集,对每趟货物运送的运价进行回归预测。 本项目为我的参赛代码,分为四个主要的部分:1.数据预处 理;2.特征工程;3.建模调参训练;4.数据可视化。 最终获得了大赛的二等奖。☆38Updated 6 years ago