xiadanqing / Regression
回归问题是数据挖掘和机器学习中常常出现的问题----本专题以 中国移动用户信用分预测 为例,对比分析几类 常见的回归算法,包括:线性回归、岭回归、贝叶斯岭回归、前馈神经网络、迭代提升树等。
☆17Updated 5 years ago
Alternatives and similar repositories for Regression:
Users that are interested in Regression are comparing it to the libraries listed below
- 朴素贝叶斯实现的文本分类(新闻分类)☆62Updated 9 years ago
- 整理记录本人担任课程助教设计的四个机器学习实验,主要涉及简单的线性回归、朴素贝叶斯分类器、支持向量机、CNN做文本分类。内附实验指导书、讲解PPT、参考代码,欢迎各位码友讨论交流。☆115Updated 7 years ago
- 某电商手机评论的文本挖掘初体验 功能板块:数据预处理、LDA模型获取特征词、情感极性判断与程度计算、回归模型预测销量排序☆115Updated 5 years ago
- 数据挖掘常用算法:关联分析Apriori算法,数据分类决策树算法,数据聚类K-means算法☆24Updated 5 years ago
- 2020年第八届泰迪杯数据挖掘C题“智慧政务文本挖掘”特等奖作品(论文与代码)☆62Updated 4 years ago
- 机器学习方法进行中文电影评论的情感分析☆30Updated 7 years ago
- 以京东评论作为数据集,使 用常见的机器学习算法如KNN、SVM、逻辑回归、贝叶斯、xgboost等等算法进行分类。使用深度学习中的CNN、RNN、CNN和RNN连接、Bi-GRU、bert模型进行分类。使用fastnlp的框架搭建文本分类。☆30Updated 4 years ago
- 统计分析课程实验作业/包含《统计分析方法》中因子分析,主成分分析,Kmeans聚类等典型算法的手写实现☆76Updated 5 years ago
- 优达学城-机器学习-毕业项目-猫狗大战☆25Updated 6 years ago
- 智慧物流算法大赛简介: 根据包括货值、路程和油价等字段的数据集,对每趟货物运送的运价进行回归预测。 本项目为我的参赛代码,分为四个主要的部分:1.数据预处理;2.特征工程;3.建模调参训练;4.数据可视化。 最终获得了大赛的二等奖。☆35Updated 5 years ago
- 基于TensorFlow的深度学习、深度增强学习代码:NN(传统神经网络)、CNN(卷积神经网络)、RNN(递归神经网络)、LSTM(长短期记忆网络)、GAN(生成对抗网络)、DRL(深度增强学习)☆51Updated 7 years ago
- 机器学习、深度学习、NLP实战项目☆138Updated 7 years ago
- 深度学习用于近日头条用户画像☆27Updated 6 years ago
- 机器学习应用平台/数据预测/文本分类☆11Updated 5 years ago
- 机器学习的特征工程,包括特征抽取、特征预处理、特征选择、特征降维。☆25Updated 6 years ago
- 🤖机器学习实战🤖:决策树、随机森林线性回归、逻辑回归、贝叶斯、kNN等☆26Updated 5 years ago
- 计算新闻文本类情感分析(采用TF-IDF,余弦距离,情感依存等算法)☆58Updated 7 years ago
- text classfication 大数据精准营销中搜狗用户画像挖掘 rank61/880☆62Updated 6 years ago
- 情感分析系统,用于分析用户评论是积极还是消极。其中使用了逻辑回归函数、决策树、支持向量机、神经网络等不同的模型进行训练☆32Updated 6 years ago
- Sentiment Classifier base on traditional Maching learning methods, eg Bayes, SVM ,DecisionTree, KNN and Deeplearning method like MLP,CNN,…☆143Updated 6 years ago
- 携程/榛果民宿实时评论挖掘软件,包含数据的实时采集/数据清洗/结构化保存/ UGC 数据主题提取/情感分析/后结构化可视化等技术的综合性演示 Demo。基于在线民宿 UGC 数据的意见挖掘项目,包含数据挖掘和 NLP 相关的处理,负责数据采集、主题抽取、情感分析等任务。主要…☆74Updated 4 years ago
- K-Means聚类分析算法Python实现,并以鸢尾花数据集为例进行聚类演示☆17Updated 6 years ago
- [大数据课程作业]分别采用神经网络、线性回归、SVM方法预测学生成绩☆44Updated 6 years ago
- 基于pytorch进行文本多分类,主要模型为双向LSTM,预测准确率83%☆42Updated 4 years ago
- 2019年CCF智能信用评分大赛个人源码库。包含XGboost模型调参,特征筛选,训练等方案。同时包含stacking模型融合方案☆27Updated 4 years ago
- 使用BP神经网络实现数字图片识别☆15Updated 3 years ago
- 分析银行营销活动数据以预测客户有多大可能购买存款产品☆12Updated 5 years ago
- 使用朴素贝叶斯、SVM、逻辑回归、RF、XGBoost、LightGBM的方法实现垃圾邮件分类任务,博客链接:https://blog.csdn.net/ljx0951/article/details/106116944☆49Updated last year
- Python中文文本挖掘:使用机器学习方法进行情感分析。☆103Updated 6 years ago
- 本科毕业设计的内容,社交媒体文本中的情感分析,运用了情感字典和机器学习的方法☆57Updated 7 years ago