xiadanqing / Regression
回归问题是数据挖掘和机器学习中常常出现的问题----本专题以 中国移动用户信用分预测 为例,对比分析几类 常见的回归算法,包括:线性回归、岭回归、贝叶斯岭回归、前馈神经网络、迭代提升树等。
☆17Updated 5 years ago
Alternatives and similar repositories for Regression:
Users that are interested in Regression are comparing it to the libraries listed below
- 智慧物流算法大赛简介: 根据包括货值、路程和油价等字段的数据集,对每趟货物运送的运价进行回归预测。 本项目为我的参赛代码,分为四个主要的部分:1.数据预处理;2.特征工程;3.建模调参训练;4.数据可视化。 最终获得了大赛的二等奖。☆36Updated 6 years ago
- 使用决策树实现预测人才招聘市场的最低薪酬预测 | C4.5分类 | CART回归 | 剪枝 | 随机森林☆19Updated 6 years ago
- 唯品会用户购买行为预测☆27Updated 7 years ago
- 整理记录本人担任课程助教设计的四个机器学习实验,主要涉及简单的线性回归、朴素贝叶斯分类器、支持向量机、CNN做文本分类。内附实验指导书、讲解PPT、参考代码,欢迎各位码友讨论交流。☆115Updated 7 years ago
- 数据挖掘常用算法:关联分析Apriori算法,数据分类决策树算法,数据聚类K-means算法☆24Updated 5 years ago
- 深度学习用于近日头条用户画像☆27Updated 6 years ago
- 住房月租金预测大数据赛TOP1☆28Updated 5 years ago
- 某电商手机评论的文本挖掘初体验 功能板块:数据预处理、LDA模型获取特征词、情感极性判断与程度计算、回归模型预测销量排序☆116Updated 5 years ago
- 情感分析系统,用于分析用户评论是积极还是消极。其中使用了逻辑回归函数、决策树、支持向量机、神经网络等不同的模型进行训练☆33Updated 6 years ago
- 🤖机器学习实战🤖:决策树、随机森林线性回归、逻辑回归、贝叶斯、kNN等☆26Updated 5 years ago
- 人工智能工程师直通车第三期 实战项目:广告点击率预测(CTR)。预测用户浏览给定网页的广告点击率,提高广告投放精准度。☆22Updated 6 years ago
- 统计分析课程实验作业/包含《统计分析方法》中因子分析,主成分分析,Kmeans聚类等典型算法的手写实现☆77Updated 5 years ago
- 洛杉矶房价预测☆19Updated 4 years ago
- 2019年CCF智能信用评分大赛个人源码库。包含XGboost模型调参,特征筛选,训练等方案。同时包含stacking模型融合方案☆27Updated 4 years ago
- 房价预测完整项目:1.爬取链家网数据 2.处理后,用sklearn中几个逻辑回归机器学习模型和keras神经网络搭建模型预测房价 最终结果神经网络效果更好,R^2值0.75左右☆231Updated 6 years ago
- 逻辑回归预测违约可能☆32Updated 7 years ago
- 2020年第八届泰迪杯数据挖掘C题“智慧政务文本挖掘”特等奖作品(论文与代码)☆63Updated 4 years ago
- 机器学习算法模型的知识图谱(思维导图)构建☆62Updated 6 years ago
- kaggle上的一个房屋价格预测比赛☆36Updated 7 years ago
- 以京东评论作为数据集,使用常见的机器学习算法如KNN、SVM、逻辑回归、贝叶斯、xgboost等等算法进行分类。使用深度学习中的CNN、RNN、CNN和RNN连接、Bi-GRU、bert模型进行分类。使用fastnlp的框架搭建文本分类。☆31Updated 4 years ago
- 机器学习、深度学习、NLP实战项目☆137Updated 7 years ago
- 机器学习实践:贷款违约预测☆37Updated 5 years ago
- 携程/榛果民宿实时评论挖掘软件,包含数据的实时采集/数据清洗/结构化保存/ UGC 数据主题提取/情感分析/后结构化可视化等技术的综合性演示 Demo。基于在线民宿 UGC 数据的意见挖掘项目,包含数据挖掘和 NLP 相关的处理,负责数据采集、主题抽取、情感分析等任务。主要…☆75Updated 4 years ago
- 利用python对3000个数据利用机器学习算法建立模型,并预测未来客户信用风险。处理数据不均衡问题时采用了SMOTE过采样以及随机过采样技术;通过相关性分析进行特征选择;建模过程中用到了Logistic回归、SVM、随机森林、GBDT四种模型,并通过网格搜索法确定最优参数…☆30Updated 2 years ago
- [大数据课程作业]分别采用神经网络、线性回归、SVM方法预测学生成绩☆44Updated 6 years ago
- 基于kaggle上Titanic数据集实现的ID3、C4.5、CART和CART剪枝算法☆39Updated 6 years ago
- 基于机器学习的信用风险评估模型,主要使用了Sklearn库,通过逻辑回归,向量机等模型,根据借款人的个人身份信息评估是否应当发放贷款。☆16Updated 2 years ago
- Python实现经典分类回归、关联分析、聚类以及推荐算法等☆211Updated 6 years ago
- 机器学习应用平台/数据预测/文本分类☆11Updated 5 years ago
- 分析银行营销活动数据以预测客户有多大可能购买存款产品☆12Updated 5 years ago