wxfsd / nltk_dataLinks
Install using NLTK downloader: nltk.download()
☆17Updated 5 years ago
Alternatives and similar repositories for nltk_data
Users that are interested in nltk_data are comparing it to the libraries listed below
Sorting:
- Chinese-Text-Classification Project including bert-classification, textCNN and so on.☆161Updated 3 years ago
- A simple framework for building some basic NLP tasks☆58Updated 3 years ago
- 利用huggingface实现文本分类☆58Updated 3 years ago
- SimCSE中文语义相似度对比学习模型☆91Updated 3 years ago
- SimCSE在中文任务上的简单实验☆605Updated 2 years ago
- SimCSE在中文上的复现,有监督+无监督☆278Updated 11 months ago
- 超轻量级bert的pytorch版本,大量中文注释,容易修改结构,持续更新☆415Updated 3 years ago
- NLP句子编码、句子embedding、语义相似度:BERT_avg、BERT_whitening、SBERT、SmiCSE☆178Updated 4 years ago
- 超长文本分类(大于1000字);文档级/篇章级文本分类;主要是解决长距离依赖问题☆131Updated 4 years ago
- 中文数据集下SimCSE+ESimCSE的实现☆191Updated 3 years ago
- SimCSE有监督与无监督实验复现☆150Updated last year
- 基于实体首尾指针SPAN的序列标注框架☆28Updated 3 years ago
- 中文文本分类、序列标注工具包(pytorch ),支持中文长文本、短文本的多类、多标签分类任务,支持中文命名实体识别、词性标注、分词、抽取式文本摘要等序列标注任务。 Chinese text classification and sequence labeling toolk…☆354Updated last year
- FewCLUE 小样本学习测评基准,中文版☆518Updated 3 years ago
- Knowledge Graph☆176Updated 3 years ago
- experiments of some semantic matching models and comparison of experimental results.☆163Updated 3 months ago
- 3000000+语义理解与匹配数据集。可用于无监督对比学习、半监督学习等构建中文领域效果最好的预训练模型☆311Updated 3 years ago
- ☆277Updated 3 years ago
- 基于GOOGLE T5中文生成式模型的摘要生成/指代消解,支持batch批量生成,多进程☆229Updated 2 years ago
- CMeEE/CBLUE/NER实体识别☆135Updated 3 years ago
- ccks2020 NER competitions☆121Updated 5 years ago
- 天池“公益AI之星”挑战赛-新冠疫情相似句对判定大赛☆16Updated 5 years ago
- text classification compitioin top 10 strategy☆18Updated 4 years ago
- CoSENT、STS、SentenceBERT☆170Updated 11 months ago
- 无监督中文关键词抽取(Keyphrase Extraction),基于统计,基于图【LDA与PageRank(TextRank, TPR, Salience Rank, Single TPR等)】,基于嵌入【SIFRank等】,开箱即用!☆109Updated 3 years ago
- 苏神SPACE pytorch版本复现☆42Updated 4 years ago
- 基于GlobalPointer的实体/关系/事件抽取☆151Updated 3 years ago
- bert_seq2seq的DDP版本,支持bert、roberta、nezha、t5、gpt2等模型,支持seq2seq、ner、关系抽取等任务,无需添加额外代码,轻松启动DDP多卡训练。☆53Updated 3 years ago
- ☆30Updated 5 years ago
- Pattern-Exploiting Training在中文上的简单实验☆173Updated 5 years ago