watersink / multiple_lable_classifitionLinks
图像多标签分类标注工具
☆15Updated 4 years ago
Alternatives and similar repositories for multiple_lable_classifition
Users that are interested in multiple_lable_classifition are comparing it to the libraries listed below
Sorting:
- YOLOV5 小目标 检测修改版☆193Updated 4 years ago
- 基于yolov5的车牌检测,包含车牌角点检测☆162Updated 3 years ago
- 支持多模型工程化的图像分类器☆25Updated 3 years ago
- 目标检测yolov5 v6.0版,pytorch实现,标注,增强,训练自定义数据集全流程☆71Updated 3 years ago
- 本文将介绍如何使用yolov5和deepsort进行目标检测和跟踪,并增加轨迹线的显示。本文的改进包括轨迹线颜色与目标框匹配、优化轨迹线只显示一段,并且当目标消失时不显示轨迹线。☆42Updated 2 years ago
- ☆100Updated last year
- ☆52Updated 2 years ago
- YOLOv5的轻量化改进(蜂巢检测项目)☆74Updated 3 years ago
- ☆197Updated last year
- yolov8n 目标检测部署版本,便于移植不同平台(onnx、tensorRT、rknn、Horizon),全网部署最简单、速度最快的部署方式。☆46Updated last year
- Yolov5 with transformers☆22Updated 4 years ago
- 基于YOLOv5和PSPNet的实时目标检测和语义分割系统☆40Updated 3 years ago
- 基于yoloV5-V6系列,train_palte添加多头检测。train_key添加关键点检测算法。☆46Updated 2 years ago
- 图像分类网络Pytorch实现☆12Updated 3 years ago
- Detection_Augmentation☆25Updated 2 years ago
- 本项目为基于yolov5的GUI目标识别程序,支持选择要使用的权重文件,设置是否使用GPU、置信度阈值等参数。☆97Updated 3 years ago
- Support data enhancement when there are few data sets(支持数据集较少的情况进行数据增强,包含随机的多种变化)☆44Updated 2 years ago
- Algorithm based on Yolo v5 to detect the front vehicles' distance☆56Updated last year
- 本项目支持对剪枝后的yolov5模型进行知识蒸馏训练(This project supports knowledge distillation training for the pruned YOLOv5 model)☆106Updated last year
- Using YoloV3 to detect pointer instruments and reading the number by Hough Transform☆53Updated 3 years ago
- 这是一个yolact-pytorch的库,可用于训练自己的数据集☆81Updated 2 years ago
- ☆33Updated 2 years ago
- jetson nano 部署 yolov5+TensorRT+Deepstream☆52Updated 2 years ago
- 💥一个专为视觉方向目标检测全流程的标注工具集,全称:Kill Object Detection Annotation Tools。☆78Updated 2 years ago
- 在YOLOv7的基础上使用KLD损失修改为旋转目标检测yolov7-obb☆187Updated last year
- 小目标跟踪的实现☆17Updated 3 years ago
- ☆140Updated 3 years ago
- 增加了较为详细的注释、一些自己的功能和封装代码方便嵌入☆18Updated 3 years ago
- 在YOLOv7-tiny的基础上使用KLD损失修改为旋转目标检测yolov7-tiny-obb☆34Updated 2 years ago
- replace YOLOv5 tag=4.0 backbone : MobileNetV2@1.0 and MobileNetV2@0.25☆24Updated 4 years ago