warren-wzw / Algorithm-deployment-template-of-each-platformLinks
边缘设备端算法部署模板框架(包括海思SS928、Hi3519 DV500;瑞芯微rv1126、rk588、比特大陆BM1684X),部署项目包括yolov5、picodet、MNIST,包括优化加速教程
☆45Updated last month
Alternatives and similar repositories for Algorithm-deployment-template-of-each-platform
Users that are interested in Algorithm-deployment-template-of-each-platform are comparing it to the libraries listed below
Sorting:
- yolov10 瑞芯微 rknn 板端 C++部署,使用平台 rk3588。☆72Updated last year
- rknn-3588部署yolov5,利用 线程池实现npu推理加速;Deploying YOLOv5 on RKNN-3588, utilizing a thread pool to achieve NPU inference acceleration.☆73Updated 2 months ago
- yolov5 detector using rockchip rknn in C++☆40Updated 2 years ago
- yolov8s在rk3588的推理部署,并使用多线程池并行npu推理加速☆38Updated 8 months ago
- 学习yolo算法和rknn框架☆36Updated 3 years ago
- 在海思Hisilicon的Hi3516dv300芯片上,利用nnie和opencv库,简洁了官方yolov3用例中各种复杂的嵌套调用/复杂编译,提供了交叉编译后可成功上板部署运行的demo。☆46Updated 3 years ago
- RKNN-YOLOV5-BatchInference-MultiThreadingYOLOV5多张图片多线程C++推理☆21Updated last year
- ☆26Updated 3 years ago
- ☆39Updated 2 years ago
- simple yolov5 rtspserver for rk3588☆51Updated 2 months ago
- yolov8 瑞芯微 rknn 板端 C++部署,使用平台 rk3588,全网最简单、运行最快的部署方式。☆37Updated last year
- yolov10 目标检测部署版本,便于移植不同平台(onnx、tensorRT、rknn、Horizon),全网部署最简单、运行速度最快的部署方式(全网首发)。☆53Updated last year
- yolov8n 部署版,基于官方的导出onnx脚本导出onnx模型,在不同平台上进行部署测试,便于移植不同平台(onnx、tensorRT、rknn、Horizon)。☆38Updated 2 years ago
- gstreamer rtsp client support rockchip and jetson nx for C/C++ Python☆62Updated last year
- ffmpeg->rockchip mpp decoding->rknpu rknn->opencv opengl rendering☆46Updated 2 years ago
- yolov8n 目标检测部署版本,便于移植不同平台(onnx、tensorRT、rknn、Horizon),全网部署最简单、速度最快的部署方式。☆45Updated last year
- YoloV8 NPU for the RK3566/68/88☆71Updated last year
- PyTorch-->ONNX-->RKNN☆123Updated 2 years ago
- 基于u2net网络进行简单修改使其部署到rk3588板子上☆21Updated last year
- yolov7 部署版本,后处理用python语言和C++语言形式进行改写,便于移植不同平台(caffe、onnx、tensorRT、RKNN、Horzion)。☆32Updated 2 years ago
- yolov11 瑞芯微 rknn 板端 C++部署,使用平台 rk3588。☆64Updated 5 months ago
- 启动多线程, relu激活, 3588的yolo部署, 帧率150以上.☆21Updated last year
- ☆81Updated 2 years ago
- RK3588 Debian11环境下实现yolov5-face的推理实现,包括Python和C++实现。主要依赖RKNPU2 SDK和rknn_toolkit_lite2☆21Updated last year
- yolov8 瑞芯微 rknn 板端 C++部署。☆110Updated last year
- Convert the official paddleocr model to a deployable model on RK1126☆38Updated 2 years ago
- python版本基于rk3588的NanoTrack,每秒可达120FPS☆117Updated 3 years ago
- UNetMultiLane 多车道线和车道线类型识别部署版本,测试不同平台部署(onnx、tensorRT、RKNN、Horzion),可识别所在的车道和车道线的类型。☆27Updated last year
- rk3568的推理+推流☆15Updated 7 months ago
- ☆94Updated last year