taishan1994 / chinese_llm_sft
使用指令微调对大模型进行微调。
☆11Updated last year
Alternatives and similar repositories for chinese_llm_sft:
Users that are interested in chinese_llm_sft are comparing it to the libraries listed below
- 基于pytorch的百度UIE命名实体识别。☆57Updated 2 years ago
- LLM for NER☆70Updated 8 months ago
- 基于qlora对baichuan-7B大模型进行指令微调。☆22Updated last year
- deep training task☆29Updated 2 years ago
- [Unofficial] Predict code for AAAI 2022 paper: Unified Named Entity Recognition as Word-Word Relation Classification☆53Updated 2 years ago
- bert-flat 简化版 添加 了很多注释☆15Updated 3 years ago
- 基于bert_mrc的中文命名实体识别☆44Updated 2 years ago
- Knowledge Graph☆172Updated 2 years ago
- 使用LoRA对ChatGLM进行微调。☆49Updated last year
- A simple framework for building some basic NLP tasks☆59Updated 2 years ago
- SinglepassTextCluster, an TextCluster tools based on Singlepass cluster algorithm that use tfidf vector and doc2vec,which can be used for…☆62Updated 3 years ago
- ☆57Updated 2 years ago
- 本项目使用大语言模型(LLM)进行开放领域三元组抽取。☆26Updated last year
- using lear to do ner extraction☆29Updated 3 years ago
- 基于pytorch的GlobalPointer进行中文命名实体识别。☆37Updated last year
- ChatGLM2-6B微调, SFT/LoRA, instruction finetune☆107Updated last year
- BLOOM 模型的指令微调☆24Updated last year
- A simple implementation of Biaffine NER.☆34Updated 3 years ago
- 2021 搜狐校园文本匹配算法大赛方案☆17Updated 5 months ago
- 文本相似度,语义向量,文本向量,text-similarity,similarity, sentence-similarity,BERT,SimCSE,BERT-Whitening,Sentence-BERT, PromCSE, SBERT☆73Updated 5 months ago
- 基于PaddleNLP开源的抽取式UIE进行医学命名实体识别(torch实现)☆44Updated 2 years ago
- 基于深度学习的FAQ式问答系统☆34Updated 3 years ago
- Ziya-LLaMA-13B是IDEA基于LLaMa的130亿参数的大规模预训练模型,具备翻译,编程,文本分类,信息抽取,摘要,文案生成,常识问答和数学计算等能力。目前姜子牙通用大模型已完成大规模预训练、多任务有监督微调和人类反馈学习三阶段的训练过程。本文主要用于Ziya-…☆45Updated last year
- prompt engineering ,llm,text2sql☆36Updated last year
- 阿里天池: 2023全球智能汽车AI挑战赛——赛道一:AI大模型检索问答 baseline 80+☆99Updated last year
- 基于simcse的中文句向量生成☆15Updated 2 years ago
- 中文数据集下SimCSE+ESimCSE的实现☆191Updated 2 years ago
- 基于UIE的小样本中文肺部CT病历实体关系抽取方法☆20Updated 2 years ago
- CCKS2020 面向中文短文本的实体链指任务。主要思路为:使用基于BiLSTM和Attention的语义模型进行Query和Doc的文本匹配,再针对匹配度进行pairwise排序,从而选出最优的知识库实体。☆47Updated 4 years ago
- NLP实验:新词挖掘+预训练模型继续Pre-training☆47Updated last year