taishan1994 / LLM-QuantizationLinks
记录量化LLM中的总结。
☆57Updated 3 weeks ago
Alternatives and similar repositories for LLM-Quantization
Users that are interested in LLM-Quantization are comparing it to the libraries listed below
Sorting:
- TensorRT-in-Action 是一个 GitHub 代码库,提供了使用 TensorRT 的代码示例,并有对应 Jupyter Notebook。☆15Updated 2 years ago
- Flash Attention in ~100 lines of CUDA (forward pass only)☆11Updated last year
- A light llama-like llm inference framework based on the triton kernel.☆169Updated 3 weeks ago
- ☆40Updated 8 months ago
- Awesome code, projects, books, etc. related to CUDA☆30Updated last month
- 使用 CUDA C++ 实现的 llama 模型推理框架☆64Updated last year
- ☆26Updated 2 years ago
- 一个轻量化的大模型推理框架☆21Updated 8 months ago
- llm theoretical performance analysis tools and support params, flops, memory and latency analysis.☆114Updated 6 months ago
- Optimize softmax in triton in many cases☆22Updated last year
- 该代码与B站上的视频 https://www.bilibili.com/video/BV18L41197Uz/?spm_id_from=333.788&vd_source=eefa4b6e337f16d87d87c2c357db8ca7 相关联。☆71Updated 2 years ago
- Triton Documentation in Chinese Simplified / Triton 中文文档☆102Updated last month
- ☆60Updated last year
- ☆26Updated 5 months ago
- ☆144Updated last year
- ☢️ TensorRT 2023复赛——基于TensorRT-LLM的Llama模型推断加速优化☆51Updated 2 years ago
- ☆49Updated last year
- An onnx-based quantitation tool.☆71Updated 2 years ago
- A tutorial for CUDA&PyTorch☆227Updated last week
- ☆14Updated 3 months ago
- Llama3 Streaming Chat Sample☆22Updated last year
- A tool for model sparse based on torch.fx☆13Updated last year
- 使用 cutlass 仓库在 ada 架构上实现 fp8 的 flash attention☆78Updated last year
- This is a repository to practice multi-thread programming in C++☆27Updated last year
- base quantization methods including: QAT, PTQ, per_channel, per_tensor, dorefa, lsq, adaround, omse, Histogram, bias_correction.etc☆51Updated 3 years ago
- Implement custom operators in PyTorch with cuda/c++☆76Updated 3 years ago
- ☆43Updated 4 years ago
- learning how CUDA works☆373Updated 11 months ago
- High performance RMSNorm Implement by using SM Core Storage(Registers and Shared Memory)☆26Updated last week
- simplify >2GB large onnx model☆70Updated last year