sxycchb / Transformer_BearingFaultDiagnosis-master
☆12Updated last year
Related projects ⓘ
Alternatives and complementary repositories for Transformer_BearingFaultDiagnosis-master
- Using transformer to realize Bearing Fault Diagnosis☆52Updated last year
- 轴承故障诊断☆61Updated 2 years ago
- 一种轻量化故障诊断框架——LiConvFormer☆66Updated last year
- ☆91Updated last year
- Transfer learning☆48Updated 3 years ago
- A few shot learning repository for bearing fault diagnosis.☆64Updated last year
- A fault diagnosis method for rotating machinery based on CNN with mixed information☆38Updated last year
- A Rolling Bearing Fault Diagnosis Method Using Multi-Sensor Data and Periodic Sampling (pytorch)☆32Updated 2 years ago
- ☆45Updated 2 years ago
- This is official code for paper "Few-Shot Bearing Fault Diagnosis via Ensembling Transformer-based Model with Mahalanobis Distance Metric…☆60Updated this week
- 基于小波时频图与 Swin Transformer 的轴承故障诊断方法☆32Updated last year
- An Adaptive Multi-Channel Attention Method for Fault Diagnosis☆16Updated 10 months ago
- 采用一种包含加权水平可见图(WHVG)的图卷积网络(GCN),对采样的轴承震动时间序列数据分析,进行滚动轴承故障诊断。其中,对HVG中两节点的边,以节点距离的倒数作为权重进行加权,以削弱噪声节点对其他距离较远节点的影响。☆38Updated last year
- 基于迁移学习DANN模型,对不同工况轴承进行故障诊断☆34Updated 3 years ago
- The intelligent fault diagnosis of HNU IDG☆77Updated 2 years ago
- Physics-informed Interpretable Wavelet Weight Initialization and Balanced Dynamic Adaptive Threshold for Intelligent Fault Diagnosis of R…☆64Updated 6 months ago
- 这是一个首层卷积为宽卷积的深度神经网络Deep Convolutional Neural Networks with Wide First-layer Kernels (WDCNN)的实现,该模型具有优越的抗噪能力,可用于轴承的智能故障诊断。☆36Updated last year
- 基于Laplace小波卷积和BiGRU的少量样本故障诊断方法 (Small sample fault diagnosis based on Laplace wavelet convolution and BiGRU)☆47Updated last year
- zggg1p / A-Domain-Adaption-Transfer-Learning-Bearing-Fault-Diagnosis-Model-Based-on-Wide-Convolution-Deep-NeuInspired by the idea of transfer learning, a combined approach is proposed. In the method, Deep Convolutional Neural Networks with Wide …☆108Updated 5 months ago
- 基于机器学习的机械故障诊断☆13Updated 8 months ago
- Hierarchical Multiscale Convolutional Neural Network (HMSCNN) for Fault Diagnosis in Rotating Machinery☆8Updated last year
- Class-imbalanced Multi-source Information Fusion Transformer-based Neural Networks for Mechanical Fault Diagnosis with Limited Data☆41Updated 7 months ago
- ☆25Updated 2 years ago
- Using LSTM to predict bearings' remaining useful life☆45Updated 3 years ago
- 基于深度学习的机械故障诊断☆25Updated 8 months ago
- ☆24Updated 3 years ago
- 基于图神经网络的机械故障诊断☆78Updated 8 months ago
- A fault diagnosis method for rotating machinery based on CNN with mixed information☆25Updated last year
- PyTorch Implementation of "Understanding and Learning Discriminant Features based on Multiattention 1DCNN for Wheelset Bearing Fault Diag…☆26Updated last year
- Innovative bearing fault diagnosis using SST algorithm for time-frequency images. Accurately transform signals into efficient time-freque…☆19Updated last year