rogerle / wav2lip_train
☆32Updated last year
Alternatives and similar repositories for wav2lip_train:
Users that are interested in wav2lip_train are comparing it to the libraries listed below
- ☆33Updated last year
- ☆11Updated last year
- wav2lip训练数据预处理综合工具☆40Updated last year
- 这是一个在wav2lip,使用wav2lip、gfpgan、yolov5等模型用RT加速的超快推理!经测试在2070显卡上可达到0.03秒每帧实现实时推理。☆27Updated last year
- This is a project about talking faces. We use 576X576 sized facial images for training, which can generate 2k, 4k, 6k, and 8k digital hum…☆50Updated 10 months ago
- Considering the original Wav2Lip was trained on LSR2 and didn't have good performance on Chinese. I preprocessed CMLR Dataset and would t…☆60Updated last year
- Just a suturing monster project.☆38Updated last year
- ☆71Updated 3 months ago
- ☆39Updated last year
- ☆50Updated last year
- ☆49Updated last year
- ☆52Updated last year
- ☆31Updated last year
- ☆36Updated 3 weeks ago
- Simple and fast wav2lip using new 256x256 resolution trained onnx-converted model for inference. Easy installation☆37Updated 3 months ago
- R2-Talker: Realistic Real-Time Talking Head Synthesis with Hash Grid Landmarks Encoding and Progressive Multilayer Conditioning☆80Updated last year
- ☆10Updated last year
- 复现Wav2Lip作者新的论文☆20Updated last year
- This project fixes the Wav2Lip project so that it can run on Python 3.9. Wav2Lip is a project that can be used to lip-sync videos to audi…☆18Updated last year
- Full version of wav2lip-onnx including face alignment and face enhancement and more...☆83Updated 3 months ago
- 基于MuseTalk的数字人代码。☆27Updated 4 months ago
- simple and fast wav2lip using onnx models for face-detection and inference. Easy installation☆24Updated 3 months ago
- 通过此代码可以免训练模型并通过轻量级服务 器定制数字人形象☆102Updated 10 months ago
- ☆204Updated last year
- 浅尝LLM☆33Updated last year
- optimized wav2lip☆19Updated last year
- ☆27Updated last year
- ☆24Updated 3 years ago
- 优化wav2lip的执行步骤,将头脸分离、嘴型替换、回补背景三个步骤分离,添加gfpgan强化面部功能,实现提前解帧,流式循环处理,对接obs☆59Updated last month
- 基于wav2lip进行虚拟数字人训练,唇形驱动,包括数据处理流程等,模型包括96x96,192x192,192x288,288x288。☆18Updated 8 months ago