langzizhixin / IP_LAP_GFPGANLinks
☆33Updated 10 months ago
Alternatives and similar repositories for IP_LAP_GFPGAN
Users that are interested in IP_LAP_GFPGAN are comparing it to the libraries listed below
Sorting:
- This is a project about talking faces. We use 576X576 sized facial images for training, which can generate 2k, 4k, 6k, and 8k digital hum…☆55Updated last year
- ☆35Updated 2 years ago
- Just a suturing monster project.☆42Updated 2 years ago
- ☆58Updated 2 years ago
- 通过此代码可以免训练模型并通过轻量级服务器定制数字人形象☆106Updated last year
- ☆42Updated last year
- ☆75Updated last year
- 优化wav2lip的执行步骤,将头脸分离、嘴型替换、回补背景三个步骤分离,添加gfpgan强化面部功能,实现提前解帧,流式循环处理,对接obs☆81Updated last year
- 这是一个在wav2lip,使用wav2lip、gfpgan、yolov5等模型用RT加速的超快推理!经测试在2070显卡上可达到0.03秒每帧实现实时推理。☆31Updated 3 months ago
- 基于MuseTalk的数字人代码。☆32Updated last year
- ☆51Updated 2 years ago
- ☆200Updated 2 years ago
- ☆43Updated 5 months ago
- wav2lip训练数据预处理综合工具☆40Updated 2 years ago
- Considering the original Wav2Lip was trained on LSR2 and didn't have good performance on Chinese. I preprocessed CMLR Dataset and would t…☆62Updated 2 years ago
- ☆49Updated 2 years ago
- ☆38Updated 2 years ago
- R2-Talker: Realistic Real-Time Talking Head Synthesis with Hash Grid Landmarks Encoding and Progressive Multilayer Conditioning☆82Updated last year
- Simple and fast wav2lip using new 256x256 resolution trained onnx-converted model for inference. Easy installation☆45Updated last year
- ☆241Updated last year
- ☆10Updated 2 years ago
- ☆20Updated last year
- The API server version of the SadTalker project. Runs in Docker, 10 times faster than the original!☆143Updated 2 years ago
- ☆80Updated 5 months ago
- ☆10Updated 2 years ago
- An optimized pipeline for DINet reducing inference latency for up to 60% 🚀. Kudos for the authors of the original repo for this amazing …☆109Updated 2 years ago
- ☆39Updated 2 years ago
- simple and fast wav2lip using onnx models for face-detection and inference. Easy installation☆28Updated last year
- Faster Talking Face Animation on Xeon CPU☆129Updated 2 years ago
- 基于wav2lip进行虚拟数字人训练,唇形驱动,包括数据处理流程等,模型包括96x96,192x192,192x288,288x288。☆21Updated last year