langzizhixin / IP_LAP_GFPGANLinks
☆32Updated 4 months ago
Alternatives and similar repositories for IP_LAP_GFPGAN
Users that are interested in IP_LAP_GFPGAN are comparing it to the libraries listed below
Sorting:
- Just a suturing monster project.☆41Updated last year
- This is a project about talking faces. We use 576X576 sized facial images for training, which can generate 2k, 4k, 6k, and 8k digital hum…☆53Updated last year
- ☆41Updated last year
- ☆35Updated 2 years ago
- ☆43Updated 3 months ago
- 这是一个在wav2lip,使用wav2lip、gfpgan、yolov5等模型用RT加速的超快推理!经测试在2070显卡上可达到0.03秒每帧实现实时推理。☆29Updated last year
- ☆52Updated last year
- 基于MuseTalk的数字人代码。☆30Updated 9 months ago
- 通过此代码可以免训练模型并通过轻量级服务器定制数字人形象☆104Updated last year
- ☆75Updated 8 months ago
- ☆35Updated last year
- 优化wav2lip的执行步骤,将头脸分离、嘴型替换、回补背景三个步骤分离,添加gfpgan强化面部功能,实现提前解帧,流式循环处理,对接obs☆73Updated 6 months ago
- wav2lip训练数据预处理综合工具☆40Updated last year
- Considering the original Wav2Lip was trained on LSR2 and didn't have good performance on Chinese. I preprocessed CMLR Dataset and would t…☆61Updated last year
- ☆50Updated last year
- ☆51Updated last year
- ☆199Updated last year
- R2-Talker: Realistic Real-Time Talking Head Synthesis with Hash Grid Landmarks Encoding and Progressive Multilayer Conditioning☆80Updated last year
- Simple and fast wav2lip using new 256x256 resolution trained onnx-converted model for inference. Easy installation☆40Updated 8 months ago
- ☆39Updated 2 years ago
- ☆224Updated last year
- ☆61Updated 3 weeks ago
- Простое WebUI на Flask для EasyWav2Lip☆27Updated last year
- An optimized pipeline for DINet reducing inference latency for up to 60% 🚀. Kudos for the authors of the original repo for this amazing …☆107Updated last year
- ☆10Updated 2 years ago
- Full version of wav2lip-onnx including face alignment and face enhancement and more...☆124Updated last week
- 基于wav2lip进行虚拟数字人训练,唇形驱动,包括数据处理流程等,模型包括96x96,192x192,192x288,288x288。☆19Updated last year
- 虚拟人说话头生成(NeRF虚拟人实时驱动) 含API☆15Updated last year
- ☆11Updated 2 years ago
- The API server version of the SadTalker project. Runs in Docker, 10 times faster than the original!☆136Updated last year