qianrenjian / keras-bert-ner
Keras solution of Chinese NER task using BiLSTM-CRF/BiGRU-CRF/IDCNN-CRF/single-CRF model with BERTs (Google's Pretrained Language Model: supporting BERT/RoBERTa/ALBERT).
☆15Updated 5 years ago
Alternatives and similar repositories for keras-bert-ner:
Users that are interested in keras-bert-ner are comparing it to the libraries listed below
- The word2vec-BiLSTM-CRF model for CCKS2019 Chinese clinical named entity recognition.☆75Updated 5 years ago
- Named Recognition Entity based on BERT and CRF 基于BERT+CRF的中文命名实体识别☆183Updated 2 years ago
- 中文命名实体识别NER。用keras实现BILSTM+CRF、IDCNN+CRF、BERT+BILSTM+CRF进行实体识别。结果当然是BERT+BILSTM+CRF最好啦。☆288Updated 5 years ago
- 实体识别和关系抽取的联合模型☆123Updated 6 years ago
- 基于Pytorch的BERT-IDCNN-BILSTM-CRF中文实体识别实现☆90Updated 2 years ago
- BiGRU、BERT☆39Updated 4 years ago
- 基于轻量级的albert实现albert+BiLstm+CRF☆88Updated last year
- Chinese NER using BiLSTM/BERT + CRF☆65Updated 3 years ago
- Code for http://lic2019.ccf.org.cn/kg 信息抽取。使用基于 BERT 的实体抽取和关系抽取的端到端的联合模型。☆286Updated 5 years ago
- albert + lstm + crf实体识别,pytorch实现。识别的主要实体是人名、地名、机构名和时间。albert + lstm + crf (named entity recognition)☆137Updated 2 years ago
- 基于BERT+BiLSTM+CRF实现中文命名实体识别☆143Updated 4 years ago
- 中文关系抽取☆136Updated 6 years ago
- developed with tensorflow 2.1.0☆62Updated 4 years ago
- Chinese clinical named entity recognition using pre-trained BERT model☆122Updated 3 years ago
- ☆34Updated 4 years ago
- Named Entity Recognition (NER) with different combinations of BiGRU, Self-Attention and CRF☆61Updated 4 years ago
- 使用Bert+CRF、Bert+BiLSTM+CRF、Bert+BiGRU+CRF、Bert+BiGRU+self-atttention+CRF、AlBert+CRF、AlBert+BiLSTM+CRF、AlBert+BiGRU+CRF、AlBert+BiGRU+self-…☆46Updated 4 years ago
- 基于BIO模式的序列标注工具-可用于命名实体识别、事件触发词识别等任务的数据标注☆71Updated 4 years ago
- Multiple-Relations-Extraction-Only-Look-Once. Just look at the sentence once and extract the multiple pairs of entities and their corresp…☆347Updated 5 years ago
- 使用R-BERT模型对人物关系模型进行分类,效果有显著提升。☆24Updated 2 years ago
- 限定领域的三元组抽取的一次尝试,本文将会介绍笔者在2019语言与智能技术竞赛的三元组抽取比赛方面的一次尝试。☆132Updated 2 years ago
- 知识图谱三元组抽取(实体-关系-实体,实体-属性-属性值)☆106Updated 3 years ago
- 实体关系抽取,使用了百度比赛的数据集。使用pytorch实现MultiHeadJointEntityRelationExtraction,包含Bert、Albert、gru的使用,并且添加了对抗训练。最后使用Flask和Neo4j图数据库对模型进行了部署☆119Updated last year
- 本项目采用Keras和Keras-bert实现文本多标签分类任务,对BERT进行微调。☆66Updated 4 years ago
- 面向中文电子病历的命名实体识别☆182Updated 4 years ago
- 基于Pytorch的命名实体识别框架,支持LSTM+CRF、Bert+CRF、RoBerta+CRF等框架☆84Updated last year
- NER and RE in medical insurance。用于医疗领域的知识图谱构建,通过DL中的相关算法,实现领域实体的命名实体识别和关系抽取。☆63Updated 5 years ago
- 文本二分类任务,是否文档是否属于政治上的出访类事件,利用BERT提取特征,模型采用简单的DNN。☆61Updated 5 years ago
- 在bert模型的pre_training基础上进行text_cnn文本分类☆78Updated 5 years ago
- A trial of kbqa based on bert for NLPCC2016/2017 Task 5 (基于BERT的中文知识库问答实践,代码可跑通)☆269Updated 5 years ago