natureLanguageQing / Medical_WoBERT
医学预训练语言模型
☆16Updated 4 years ago
Alternatives and similar repositories for Medical_WoBERT:
Users that are interested in Medical_WoBERT are comparing it to the libraries listed below
- 瑞金医院知识图谱大赛总决赛第四名比赛攻略_megemini队☆34Updated 6 years ago
- Tensorflow solution of NER task Using BiLSTM-CRF model with CMU/Google XLNet☆45Updated 5 years ago
- 基于span分类和负采样的嵌套实体识别☆14Updated 2 years ago
- 开课吧&后厂理工学院_百度NLP项目2:试题数据集多标签文本分类 Models: FastText TextCNN GCN BERT et al.☆48Updated 5 years ago
- CHIP2021医学对话临床发现阴阳性判别任务冠军方案☆18Updated 3 years ago
- OpenNRE for Chinese open relation extraction task in pytorch☆34Updated 2 years ago
- 实体识别和信息抽取☆18Updated 5 years ago
- 企业事件抽取☆14Updated 3 years ago
- CCKS 2020: 面向中文短文本的实体链指任务☆43Updated 4 years ago
- BDCI2019-互联网金融新实体发现-第7名(本可top3)☆18Updated 5 years ago
- 天池-新冠疫情相似句对判定大赛 大白_Rank6☆21Updated 4 years ago
- CCF-BDCI大数据与计算智能大赛-互联网金融新实体发现-9th☆54Updated 5 years ago
- CHIP 2019平安医疗科技疾病问答迁移学习比赛baseline,rank7☆26Updated 5 years ago
- CHIP2018问句匹配大 赛 Rank6解决方案☆21Updated 6 years ago
- CCKS 2019 Task 2: Entity Recognition and Linking☆94Updated 5 years ago
- 使用ALBERT预训练模型,用于识别文本中的时间,同时验证模型的预测耗时是否有显著提升。☆56Updated 5 years ago
- 达观算法比赛ner任务,从重新训练bert,到finetune预测。☆75Updated 2 years ago
- Relation Extraction 中文关系提取☆72Updated 6 years ago
- 转换 https://github.com/brightmart/albert_zh 到google格式☆62Updated 4 years ago
- DescriptionPairsExtraction, entity and it's description pairs extract program based on Albert and data back-annotation. 基于Albert与结构化数据回标思…☆20Updated 3 years ago
- 对苏神的bert4keras的实现原理和矩阵运算进行详细的注释,方便学习;bert4keras链接:https://github.com/bojone/bert4keras☆41Updated 4 years ago
- 基于“Seq2Seq+前缀树”的知识图谱问答☆70Updated 3 years ago
- 2019语言与智能技术竞赛 信息抽取(Information Extraction) 个人baseline with BERT☆18Updated 5 years ago
- Python version Aho-Corasic Automaton.☆19Updated 3 years ago
- Performance comparison between Chinese word segmentation and part-of-speech tagging tools☆58Updated 5 years ago
- 2019 语言与智能技术竞赛-知识驱动对话 B榜第5名源码和模型☆25Updated 5 years ago
- ☆29Updated 5 years ago
- 2020语言与智能技术竞赛:关系抽取任务(https://aistudio.baidu.com/aistudio/competition/detail/31?lang=zh_CN)☆24Updated 4 years ago
- 竞赛任务: 输入: 输入文件包括若干行中文短文本。 输出: 输出文本每一行包括此中文短文本的实体识别与链指结果,需识别出文本中所有mention(包括实体与概念),每个mention包含信息如下:mention在给定知识库中的ID,mention名和在中文短文本中的位置偏移…☆15Updated 2 years ago
- 开天-新词,中文新词发现工具,Chinese New Word Discovery Tool☆20Updated 5 years ago