marty1885 / rknn-superresolutionLinks
Superresolution running on Rockchip NPU (RK3588, etc..)
☆16Updated last year
Alternatives and similar repositories for rknn-superresolution
Users that are interested in rknn-superresolution are comparing it to the libraries listed below
Sorting:
- 基于u2net网络进行简单修改使其部署到rk3588板子上☆21Updated last year
- top-like script for rockhip NPUs on linux☆45Updated 2 months ago
- YoloV5 NPU for the RK3566/68/88☆103Updated last year
- ☆25Updated 3 years ago
- RKNN-YOLOV5-BatchInference-MultiThreadingYOLOV5多张图片多线程C++推理☆21Updated last year
- rknn-3588部署yolov5,利用线程池实现npu推理加速;Deploying YOLOv5 on RKNN-3588, utilizing a thread pool to achieve NPU inference acceleration.☆73Updated 2 months ago
- ffmpeg->rockchip mpp decoding->rknpu rknn->opencv opengl rendering☆44Updated 2 years ago
- yolov8 旋转目标检测部署,瑞芯微RKNN芯片部署、地平线Horizon芯片部署、TensorRT部署☆27Updated last year
- Useful resources for developing with the RK3588.☆315Updated 2 months ago
- 多路rtsp硬解码☆22Updated last year
- yolov11 瑞芯微 rknn 板端 C++部署,使用平台 rk3588。☆60Updated 4 months ago
- ☆875Updated 2 weeks ago
- ☆745Updated last year
- rk3568的推理+推流☆14Updated 7 months ago
- ☆93Updated 11 months ago
- ☆16Updated last year
- A simple tutorial of SNPE.☆175Updated 2 years ago
- 边缘设备端算法部署模板框架(包括海思SS928、Hi3519 DV500;瑞芯微rv1126、rk588、比特大陆BM1684X),部署项目包括yolov5、picodet、MNIST,包括优化加速教程☆42Updated last month
- ☆119Updated last month
- RK3588上实现车辆车牌检测,并输出4个点的landmark,车牌颜色和车牌识别☆13Updated last year
- Easy installation and usage of Rockchip's NPUs found in RK3588 and similar SoCs☆166Updated last month
- Demonstration of combine YOLO and depth estimation on Android device.☆52Updated 2 months ago
- yolov8s在rk3588的推理部署,并使用多线程池并行npu推理加速☆35Updated 8 months ago
- Speed up image preprocess with cuda when handle image or tensorrt inference☆72Updated last week
- ☆42Updated last year
- ☆26Updated 2 weeks ago
- 使用OpenCV部署低光照图像增强,包含C++和Python两个版本的程序☆23Updated last year
- Run Large Language Models on RK3588 with GPU-acceleration☆113Updated last year
- YOLOv5 for RK3588☆82Updated last year
- The rknn2 API uses the secondary encapsulation of the process, which is easy for everyone to call. It is applicable to rk356x rk3588☆45Updated 3 years ago