marty1885 / rknn-superresolutionLinks
Superresolution running on Rockchip NPU (RK3588, etc..)
☆19Updated last year
Alternatives and similar repositories for rknn-superresolution
Users that are interested in rknn-superresolution are comparing it to the libraries listed below
Sorting:
- 基于u2net网络进行简单修改使其部署到rk3588板子上☆23Updated 2 years ago
- ffmpeg->rockchip mpp decoding->rknpu rknn->opencv opengl rendering☆48Updated 3 years ago
- yolov8s在rk3588的推理部署,并使用多线程池并行npu推理加速☆58Updated last year
- Speed up image preprocess with cuda when handle image or tensorrt inference☆83Updated 2 months ago
- ☆115Updated last year
- YoloV8 NPU for the RK3566/68/88☆80Updated last year
- simple yolov5 rtspserver for rk3588☆63Updated 8 months ago
- The rknn2 API uses the secondary encapsulation of the process, which is easy for everyone to call. It is applicable to rk356x rk3588☆48Updated 3 years ago
- ☆29Updated 3 years ago
- Examples of AI model running on the board, such as horizon/rockchip and so on.☆21Updated 2 years ago
- ☆132Updated last month
- RKNN模型推理部署模板☆25Updated 2 years ago
- 多路rtsp硬解码☆28Updated 2 years ago
- YoloV5 NPU for the RK3566/68/88☆122Updated last year
- The Pipeline example based on AX650N/AX8850 shows the software development skills of Image Processing, NPU, Codec, and Display modules, …☆12Updated 5 months ago
- rknn-3588部署yolov5,利用线程池实现npu推理加速;Deploying YOLOv5 on RKNN-3588, utilizing a thread pool to achieve NPU inference acceleration.☆84Updated 8 months ago
- ☆40Updated 2 years ago
- yolov8seg 瑞芯微 rknn 板端 C++部署,使用平台 rk3588。☆30Updated last year
- RKNN-YOLOV5-BatchInference-MultiThreadingYOLOV5多张图片多线程C++推理☆22Updated 2 years ago
- gstreamer rtsp client support rockchip and jetson nx for C/C++ Python☆63Updated 2 years ago
- yolov10 瑞芯微 rknn 板端 C++部署,使用平台 rk3588。☆74Updated last year
- linux bsp app & sample for axpi (ax620a)☆36Updated 2 years ago
- Allows access via HTTP to LLM running on RK3588 NPU. Returns JSON response.☆28Updated last year
- yolov8 瑞芯微 rknn 板端 C++部署。☆114Updated 2 years ago
- RK3588 Debian11环境下实现yolov5-face的推理实现,包括Python和C++实现。主要依赖RKNPU2 SDK和rknn_toolkit_lite2☆25Updated last year
- Inference YOLOv8 segmentation on ONNX, RKNN, Horizon and TensorRT☆35Updated 2 years ago
- yolov8 瑞芯微 rknn 板端 C++部署,使用平台 rk3588,全网最简单、运行最快的部署方式。☆39Updated 2 years ago
- A simple tutorial of SNPE.☆183Updated 2 years ago
- 高效部署:YOLO X, V3, V4, V5, V6, V7, V8, EdgeYOLO TRT推理 ™️ ,前后处理均由CUDA核函数实现 CPP/CUDA🚀☆53Updated 2 years ago
- python版本基于rk3588的NanoTrack,每秒可达120FPS☆137Updated 3 years ago