Ley-WL / U2Net-rknnLinks
基于u2net网络进行简单修改使其部署到rk3588板子上
☆23Updated last year
Alternatives and similar repositories for U2Net-rknn
Users that are interested in U2Net-rknn are comparing it to the libraries listed below
Sorting:
- ☆29Updated 3 years ago
- 基于ultralytics-yolov8, 将其检测/分类/分割/姿态等任务移植到rk3588上☆15Updated last year
- ☆40Updated 2 years ago
- 海康威视工业相机在瑞芯微RK3588下调用NPU跑YOLOv5☆31Updated 2 years ago
- python版本基于rk3588的NanoTrack,每秒可达120FPS☆124Updated 3 years ago
- RK3588上实现车辆车牌检测,并输出4个点的landmark,车牌颜色和车牌识别☆17Updated last year
- ffmpeg->rockchip mpp decoding->rknpu rknn->opencv opengl rendering☆46Updated 3 years ago
- RKNN-YOLOV5-BatchInference-MultiThreadingYOLOV5多张图片多线程C++推理☆21Updated 2 years ago
- RKNN version demo of [CVPR21] LightTrack: Finding Lightweight Neural Network for Object Tracking via One-Shot Architecture Search☆23Updated 3 years ago
- yolov5: pytorch->onnx->caffe->hisi3559☆22Updated last year
- rknn-3588部署yolov5,利用线程池实现npu推理加速;Deploying YOLOv5 on RKNN-3588, utilizing a thread pool to achieve NPU inference acceleration.☆79Updated 6 months ago
- NanoTrack(@HonglinChu), C++ TensorRT deployment. MAX 250 FPS!☆28Updated 2 years ago
- 启动多线程, relu激活, 3588的yolo部署, 帧率150以上.☆22Updated 2 years ago
- yolov10 瑞芯微 rknn 板端 C++部署,使用平台 rk3588。☆74Updated last year
- 基于hisi3559a的yolov5☆37Updated 3 years ago
- yolov8 瑞芯微 rknn 板端 C++部署。☆114Updated last year
- yolov8s在rk3588的推理部署,并使用多线程池并行npu推理加速☆51Updated last year
- yolov8 瑞芯微 rknn 板端 C++部署,使用平台 rk3588,全网最简单、运行最快的部署方式。☆39Updated last year
- rk3568的推理+推流☆18Updated 11 months ago
- 基于海思3519的YOLOv3例程☆23Updated 4 years ago
- yolov7 部署版本,后处理用python语言和C++语言形式进行改写,便于移植不同平台(caffe、onnx、tensorRT、RKNN、Horzion)。☆32Updated 2 years ago
- yolov5 deploy 3559☆33Updated 3 years ago
- yolov11 瑞芯微 rknn 板端 C++部署,使用平台 rk3588。☆68Updated 8 months ago
- Some changes on original repo☆27Updated 2 years ago
- 海思nnie跑yolov5☆27Updated 3 years ago
- UNetMultiLane 多车道线和车道线类型识别部署版本,测试不同平台部署(onnx、tensorRT、RKNN、Horzion),可识别所在的车道和车道线的类型。☆28Updated last year
- YoloV8 NPU for the RK3566/68/88☆78Updated last year
- 边缘设备端算法部署模板框架(包括海思SS928、Hi3519 DV500;瑞芯微rv1126、rk588、比特大陆BM1684X),部署项目包括yolov5、picodet、MNIST,包括优化加速教程☆62Updated 5 months ago
- yolov8n 部署版,基于官方的导出onnx脚本导出onnx模型,在不同平台上进行部署测试,便于移植不同平台(onnx、tensorRT、rknn、Horizon)。☆38Updated 2 years ago
- yolov11(yolov8)尝试了7种不同的部署方法,并对每种方法的优势进行了简单总结。不同的平台、不同的时耗或CPU占用需求,总有一种方法是适用的。针对想入门部署的也是一个很好的参考学习资料。☆40Updated 10 months ago