linzhouzhi / recommendLinks
R 语言实现的常用的推荐算法itemCF,UserCF ,Tags,SVD,Apriori
☆18Updated 8 years ago
Alternatives and similar repositories for recommend
Users that are interested in recommend are comparing it to the libraries listed below
Sorting:
- News recommendation system based on spark.☆49Updated 8 years ago
- Using gbdt+lr in recommend system and comparing the auc of lr, gbdt, gbdt+lr.☆24Updated 8 years ago
- 我的数据挖掘比赛打怪之路☆26Updated 7 years ago
- An interface of mllib and ml algorithms implemented by jddata with spark☆23Updated 11 years ago
- A recommend system forked from APEX☆83Updated 11 years ago
- Python与机器学习方向,《聚类与推荐算法》课程仓库☆43Updated 7 years ago
- 主要解决ctr预估工程中的特征选择,特征编号(特征离散),单特征auc和logloss这3个问题.☆20Updated 8 years ago
- csdn用户画像的源码☆20Updated 8 years ago
- Spark机器学习书代码☆25Updated 7 years ago
- 数据挖掘竞赛(Kaggle,Data Castle,Analytics Vidhya,DrivenData)入门实践☆82Updated 8 years ago
- 通过对于现有开源分布式机器学习工具的整合(主要是基于参数服务器的logistic regression,xgboost,FFM,FM ),打造一个工业级的,可以线上使用的点击率预估流水线☆26Updated 8 years ago
- 阿里2015年天池大数据比赛,采用移动窗口采样加随机森林学习☆136Updated 10 years ago
- JPMML-SparkML plugin for converting LightGBM-Spark models to PMML☆43Updated 4 years ago
- Docker使用介绍☆13Updated 9 years ago
- 科赛 携程出行产品未来14个月销量预测 第2名☆62Updated 8 years ago
- 基于用户行为的推荐算法大赛---第四名(临兵斗列)☆41Updated 9 years ago
- MangoLiu's Bolg☆55Updated 9 years ago
- 数据挖掘,参加Kaggle的一个预测广告点击率的竞赛☆28Updated 9 years ago
- This is for http://115.28.182.124/c/00000000050/team☆99Updated 11 years ago
- 电影评分推荐系统☆14Updated 10 years ago
- [UNMAINTAINED] 基于PySpark与MySQL的复杂网络链路预测。☆22Updated 7 years ago
- gdbt implement by scikit-learn☆25Updated 8 years ago
- JPMML-SparkML plugin for converting XGBoost4J-Spark models to PMML☆36Updated 5 years ago
- ☆15Updated 5 years ago
- 基于 Spark Streaming + ALS 的餐饮推荐系统☆87Updated 7 years ago
- 基于Spark MLlib ALS的音乐推荐系统☆31Updated 9 years ago
- 利用RabbitMQ消息队列架设实时机器学习服务☆32Updated 6 years ago
- 基于Spark ML实现的豆瓣电影推荐系统☆231Updated 7 years ago
- 机器学习项目☆38Updated 8 years ago
- 文本去重算法,研究自推荐系统中新闻的去重,采用了雅虎的Near-duplicates and shingling算法,服务端用c实现,客户端用java实现,利用thrift框架进行通信,为了提高扩展性,去重可以在服务端实现,服务器也提供了计算的接口,方便客户端自己扩展☆24Updated 11 years ago