lework / llm-benchmarkLinks
LLM 并发性能测试工具,支持自动化压力测试和性能报告生成。
☆81Updated 2 months ago
Alternatives and similar repositories for llm-benchmark
Users that are interested in llm-benchmark are comparing it to the libraries listed below
Sorting:
- dify's rag patch module☆240Updated last week
- gpt_server是一个用于生产级部署LLMs、Embedding、Reranker、ASR和TTS的开源框架。☆184Updated last week
- 通义千问VLLM推理部署DEMO☆580Updated last year
- An easy-to-use framework for modular RAG☆363Updated last week
- Ragflow-Plus 是 Ragflow 的二次开发版本,使其更为简洁实用☆530Updated this week
- DIFY PULGIN 插件源码集合☆223Updated last month
- ☆248Updated 5 months ago
- 一个适合学习、使用、自主扩展的RAG【检索增强生成】系统!可联网做AI搜索☆490Updated 9 months ago
- A code executor for Dify that is compatible with the official sandbox API calls and dependency installation.☆279Updated last month
- Scripting tool for downloading Dify plugin package from Dify Marketplace and Github and repackaging [true] offline package.☆212Updated last week
- 添加🚀流式 Web 服务到 GraphRAG,兼容 OpenAI SDK,支持可访问的实体链接🔗,支持建议问题,兼容本地嵌入模型,修复诸多问题。Add streaming web server to GraphRAG, compatible with OpenAI SD…☆251Updated 2 months ago
- 自动批量上传并解析文档至 RagFlow 知识库,省去手动操作,提升效率。☆341Updated 2 weeks ago
- RAG-QA-Generator 是一个用于检索增强生成(RAG)系统的自动化知识库构建与管理工具。该工具通过读取文档数据,利用大规模语言模型生成高质量的问答对(QA对),并将这些数据插入数据库中,实现RAG系统知识库的自动化构建和管理。☆189Updated 5 months ago
- Community maintained hardware plugin for vLLM on Ascend☆721Updated this week
- 企业级RAG系统从入门到精通☆478Updated 2 months ago
- 《赋范大模型技术社区》是针对各阶大模型学习者量身打造的基于各类大模型,包括环境设置、本地部署、高效微调、开发实战等技能在内的全流程指导!☆415Updated 3 months ago
- A streamlined and customizable framework for efficient large model evaluation and performance benchmarking☆1,076Updated this week
- 使用LangGraph+DeepSeek-R1+FastAPI+Gradio实现一个带有记忆功能的流量包推荐智能客服web端用例,同时也支持gpt大模型、国产大 模型(OneApi方式)、Ollama本地开源大模型、阿里通义千问大模型☆142Updated last month
- 使用Docker Stack搭建Milvus向量数据库集群☆32Updated last year
- ☆146Updated 2 months ago
- GraphRAG的应用实例,项目特点在于提供了替换OpenAI模型的方法,并通过修改原有提示和切分文档的方法,提高了GraphRAG处理中文内容的能力。☆158Updated 7 months ago
- ☆41Updated 2 months ago
- Convert files into markdown to help RAG or LLM understand, based on markitdown and MinerU, which could provide high quality pdf parser.☆102Updated 2 months ago
- Easy-to-Use RAG Framework; CCF AIOps International Challenge 2024 Top3 Solution; CCF AIOps 国际挑战赛 2024 季军方案☆490Updated 6 months ago
- 基于RAG的私有知识库问答系统☆260Updated 6 months ago
- ☆66Updated last year
- 为AI带路党Pro视频准备☆245Updated 3 months ago
- High-performance inference framework for large language models, focusing on efficiency, flexibility, and availability.☆1,134Updated this week
- llamafactory blog☆28Updated 7 months ago
- vLLM Documentation in Chinese Simplified / vLLM 中文文档☆75Updated 3 weeks ago