leeguandong / Yolov5_rknnlite2Links
yolov5行人检测,rk3588,rknlite2部署
☆13Updated 2 years ago
Alternatives and similar repositories for Yolov5_rknnlite2
Users that are interested in Yolov5_rknnlite2 are comparing it to the libraries listed below
Sorting:
- yolov8 旋转目标检测部署,瑞芯微RKNN芯片部署、地平线Horizon芯片部署、TensorRT部署☆28Updated last year
- Modify Code From rknn-toolkit2☆54Updated 11 months ago
- yolov11 瑞芯微 rknn 板端 C++部署,使用平台 rk3588。☆64Updated 5 months ago
- yolov5模型(.pt)在RK3588(S)上的部署(实时摄像头检测)☆58Updated 2 years ago
- yolov8n 部署版本,后处理用python语言和C++语言形式进行改写,便于移植不同平台(onnx、tensorRT、RKNN、Horzion)☆156Updated last year
- yolov8 瑞芯微 rknn 板端 C++部署。☆112Updated last year
- YOLOv5 for RK3588☆85Updated last year
- jetson nano 部署 yolov5+TensorRT+Deepstream☆52Updated 2 years ago
- yolov8n 目标检测部署版本,便于移植不同平台(onnx、tensorRT、rknn、Horizon),全网部署最简单、速度最快的部署方式。☆45Updated last year
- ☆44Updated 3 years ago
- simple yolov5 rtspserver for rk3588☆54Updated 3 months ago
- yolov7目标检测算法的c++ tensorrt部署代码☆31Updated 3 years ago
- yoloworld 的onnx、tensorRT、rknn、horizon 部署,通用各种平台和芯片。☆23Updated last year
- Easy Training Official YOLOv11、YOLOv10、YOLOv8、YOLOv7、YOLOv6、YOLOv5 and Prune all_model using Torch-Pruning!☆90Updated last week
- UNetMultiLane 多车道线和车道线类型识别部署版本,测试不同平台部署(onnx、tensorRT、RKNN、Horzion),可识别所在的车道和车道线的类型。☆28Updated last year
- ☆19Updated 4 years ago
- 基于DeepStream6.0和yolov5-6.0的目标检测☆19Updated 3 years ago
- 使用ONNXRuntime部署阿里达摩院开源DAMO-YOLO目标检测,一共包含27个onnx模型,依然是包含了C++和Python两个版本的程序☆34Updated 2 years ago
- PyTorch-->ONNX-->RKNN☆123Updated 2 years ago
- 🚀🚀🚀This is an AI high-performance reasoning C++ library, Currently supports the deployment of yolov5, yolov7, yolov7-pose, yolov8, yol…☆134Updated last year
- LabelTrack是一个针对于多目标跟踪的图形化自动标注平台☆91Updated 2 years ago
- python版本基于rk3588的NanoTrack,每秒可达120FPS☆118Updated 3 years ago
- 使用TensorRT加速YOLOv8-Seg,完整的后端框架,包括Http服务器,Mysql数据库,ffmpeg视频推流等。☆85Updated last year
- yolov10 瑞芯微 rknn 板端 C++部署,使用平台 rk3588。☆72Updated last year
- 使用pytorch_quantization对yolov8进行量化☆114Updated last year
- yolov8 tensorrt 加速☆53Updated 2 years ago
- 海康威视工业相机在瑞芯微RK3588下调用NPU跑YOLOv5☆31Updated last year
- yolov11(yolov8)尝试了7种不同的部署方法,并对每种方法的优势进行了简单总结。不同的平台、不同的时耗或CPU占用需求,总有一种方法是适用的。针对想入门部署的也是一个很好的参考学习资料。☆33Updated 6 months ago
- ☆27Updated 3 years ago
- 高效部署:YOLO X, V3, V4, V5, V6, V7, V8, EdgeYOLO TRT推理 ™️ ,前后处理均由CUDA核函数实现 CPP/CUDA🚀☆49Updated 2 years ago