laddie132 / NLP-InterviewLinks
NLP相关算法岗-面试知识点总结
☆114Updated 4 years ago
Alternatives and similar repositories for NLP-Interview
Users that are interested in NLP-Interview are comparing it to the libraries listed below
Sorting:
- 专门为自然语言处理(NLP)面试准备的学习笔记与资料☆352Updated 4 years ago
- 主要介绍了NLP的基础模型以及相关算法☆98Updated 5 years ago
- 阿里云天池零基础入门NLP比赛_rank4选手比赛总结: https://tianchi.aliyun.com/competition/entrance/531810/introduction☆193Updated 2 years ago
- leetcode Study☆29Updated 2 years ago
- 《统计学习方法》--李航 书中算法实现☆199Updated 5 years ago
- 天池大赛疫情文本挑战赛线上第三名方案分享☆227Updated 4 years ago
- ☆278Updated 3 years ago
- NLP杂货铺,python实现各种算法/工具,辅助算法理解/应用☆154Updated 4 years ago
- ccf 2020 qa match competition top1☆266Updated 4 years ago
- NLP句子编码、句子embedding、语义相似度:BERT_avg、BERT_whitening、SBERT、SmiCSE☆177Updated 3 years ago
- 从头训练MASK BERT☆137Updated 2 years ago
- A baseline for WenTianSearch☆85Updated 3 years ago
- 中文无监督SimCSE Pytorch实现☆134Updated 4 years ago
- 预训练语言模型综述☆550Updated 5 years ago
- torchtext使用总结,从零开始逐步实现了torchtext文本预处理过程,包括截断补长,词表构建,使用预训练词向量,构建可用于PyTorch的可迭代数据等步骤。并结合Pytorch实现LSTM.☆175Updated 6 years ago
- NEZHA: Neural Contextualized Representation for Chinese Language Understanding☆262Updated 3 years ago
- Pattern-Exploiting Training在中文上的简单实验☆173Updated 4 years ago
- 天池 新冠疫情相似句对判定大赛 top6方案☆77Updated 3 years ago
- 法研杯2019相似案例匹配第二名解决方案(附数据集和文档),CAIL2020/2021司法考试赛道冠军队伍☆249Updated 4 years ago
- Pytorch Bert Finetune in Chinese Text Classification☆220Updated last year
- NLP算法领域的面试资料大全,包括笔试、面试题目☆42Updated 5 years ago
- 给研一同学的NLP入门指南☆60Updated last year
- datafountain☆16Updated 5 years ago
- ☆21Updated 4 years ago
- Reproducing the paper — Deep Short Text Classification with Knowledge Powered Attention☆102Updated 4 years ago
- 自然语言处理NLP(自然语言生成NLG、自 然语言理解NLU)、自然语言学术会议大盘点、自然语言大佬介绍、NLP研究机构、NLP资料分享、NLP学习资源分享、NLP学术论文介绍☆185Updated 4 months ago
- 天池 疫情相似句对判定大赛 线上第一名方案☆436Updated 4 years ago
- 全球人工智能技术创新大赛-赛道三-冠军方案☆239Updated 4 years ago
- ☆26Updated 4 years ago
- bert annotation, input and output for people from scratch, 代码注释, 有每一步的输入和输出, 适合初学者☆93Updated 2 years ago