jylink / yolov5-pruning
☆14Updated 3 years ago
Alternatives and similar repositories for yolov5-pruning:
Users that are interested in yolov5-pruning are comparing it to the libraries listed below
- Using model pruning method to obtain compact models Pruned-YOLOv5 based on YOLOv5.☆58Updated 3 years ago
- ☆38Updated last year
- provide some new architecture, channel pruning and quantization methods for yolov5☆29Updated 4 months ago
- YoloV5sl_V4模型pruning☆13Updated 3 years ago
- 将YOLOv5-Lite代码中的head更换为YOLOX head☆23Updated 2 years ago
- yolov5 knowledge distilling☆24Updated 2 years ago
- yolov5 pruning (SFP Pruning、Nework Slimming)☆18Updated 3 years ago
- A new version YOLO-Nano☆30Updated 3 years ago
- yolov5模型训练后量化代码☆19Updated 4 years ago
- ☆52Updated 2 years ago
- yolov5第四版☆15Updated 3 years ago
- 无人机视角、多模态、模型剪枝、国产AI芯片部署☆38Updated 3 years ago
- In this repository using the sparse training, group channel pruning and knowledge distilling for YOLOV4,☆31Updated last year
- Quantization Aware Training☆65Updated last year
- ☆23Updated 2 years ago
- ☆68Updated 3 years ago
- PyTorch implementation of PP-LCNet☆79Updated last year
- Include mobilenet series (v1,v2,v3...) and yolo series (yolov3,yolov4,...)☆33Updated 3 years ago
- ☆23Updated 2 years ago
- yolov5目标检测模型的知识蒸馏(基于响应的蒸馏)☆97Updated 3 years ago
- 可以训练yolov5(v6.0)、yolox、小型网络,添加注意力机制☆65Updated 3 years ago
- 🚀🚀🚀YOLOC is Combining different modules to build an different Object detection model.Including YOLOv3、YOLOv4、Scaled_YOLOv4、YOLOv5、YOLO…☆74Updated 2 years ago
- A state of the art of new lightweight YOLO model implemented by TensorFlow 2. This project is the official code for the paper "CSL-YOLO: …☆60Updated 2 years ago
- ☆91Updated 3 years ago
- YOLO Series☆13Updated last year
- A PyTorch version of You Only Look at One-level Feature object detector☆38Updated last year
- ☆21Updated 3 years ago
- 手把手教你OpenVINO下部署NanoDet模型,intel i7-7700HQ CPU实测6ms一帧☆36Updated 3 years ago
- ☆63Updated 3 years ago
- 使 用OpenCV部署FastestDet,包含C++和Python两种版本的程序。模型文件不超过1M☆39Updated 2 years ago