jackzhenguo / machine-learning
Python, data analysis, machine learning...
☆44Updated 5 years ago
Alternatives and similar repositories for machine-learning:
Users that are interested in machine-learning are comparing it to the libraries listed below
- 信用卡违约率分析☆18Updated 6 years ago
- basic git commands list!☆14Updated 6 years ago
- Python数据分析与挖掘实战书中的实例学习☆28Updated 7 years ago
- [译] Scikit-learn 秘籍☆54Updated 5 years ago
- 天池竞赛-智慧海洋开源代码☆53Updated 4 years ago
- 2017 Global Data Challenge Hosted by JD Finance / JDD—2017京东金融全球数据 探索者大赛 金融信贷需求预测☆78Updated 6 years ago
- 记录Learning from data一书中的习题解答☆78Updated 5 years ago
- 🤓 Important machine learning knowledge, each article deeply analyzes theoretical knowledge☆118Updated 5 years ago
- A collection of popular Data Science Competitions☆55Updated 6 years ago
- [译] NumPy 中文参考(待校对)☆80Updated 6 years ago
- 记录我学习数据挖掘过程的笔记和见到的奇技☆121Updated 6 years ago
- Python Practice of Data Analysis and Mining☆31Updated 7 years ago
- 500+ spark short code examples in jupyter notebook!☆101Updated 5 years ago
- 天池大数据比赛总结☆39Updated 7 years ago
- [译] Pandas 中文文档(待校对)☆159Updated 6 years ago
- 《机器学习基础:从入门到求职》一书相关配套和补充资料提供,内容勘误专用。☆39Updated 6 years ago
- 自己总结的机器学习的算法与相应的程序☆21Updated 6 years ago
- 一群 ML 自学者的日常☆60Updated 5 years ago
- 机器学习笔记,来源于:李航的《统计学习方法》 周志华的《机器学习》 Peter Harrington 的《机器学习实战》 以及Python的 Scikit-Learn 开源库。☆41Updated 8 years ago
- 《动手学深度学习》:面向中文读者、能运行、可讨论。英文版即伯克利“深度学习导论”教材。☆8Updated 5 years ago
- 2017京东信贷金额预测竞赛,上传的代码有竞赛的原始代码和赛后结合其他选手的思路整理的重构代码。☆44Updated 7 years ago
- 机器学习竞赛代码☆14Updated 8 years ago
- [译] Matplotlib 用户指南☆193Updated 4 years ago
- python data analysis and visualization☆34Updated 7 years ago
- Python exercise programme☆65Updated 5 months ago
- 数据挖掘领域十大算法代码实现☆58Updated 8 years ago
- This resource implements a deep neural network through Numpy, and is equipped with easy-to-understand theoretical derivation, mainly for …☆78Updated 5 years ago
- 📖 Machine learning algorithms and deep learning algorithms☆26Updated last year
- 为天池数据竞赛写的自动化特征工程和训练工具,可以通过配置的方式从mysql数据库中生成特征。同时重新封装了数据,特征和模型,使其可以被自动化测试系统识别及调用。待完成的工作:自动化测试系统的调度关键技术。☆12Updated 9 years ago
- 零基础学习spark,大数据学习☆46Updated 6 years ago