hova88 / CUDA-MatMul-PracticeLinks
☆16Updated last year
Alternatives and similar repositories for CUDA-MatMul-Practice
Users that are interested in CUDA-MatMul-Practice are comparing it to the libraries listed below
Sorting:
- study of cutlass☆21Updated 6 months ago
- ☆21Updated 4 years ago
- ☆36Updated 7 months ago
- CUDA 6大并行计算模式 代码与笔记☆61Updated 4 years ago
- ☆17Updated last year
- SGEMM optimization with cuda step by step☆19Updated last year
- Standalone Flash Attention v2 kernel without libtorch dependency☆109Updated 8 months ago
- ☆33Updated last year
- ☆11Updated 3 months ago
- CUDA 8-bit Tensor Core Matrix Multiplication based on m16n16k16 WMMA API☆30Updated last year
- CVFusion is an open-source deep learning compiler to fuse the OpenCV operators.☆29Updated 2 years ago
- ☆58Updated 6 months ago
- Several optimization methods of half-precision general matrix vector multiplication (HGEMV) using CUDA core.☆62Updated 8 months ago
- A standalone GEMM kernel for fp16 activation and quantized weight, extracted from FasterTransformer☆92Updated last week
- ☢️ TensorRT 2023复赛——基于TensorRT-LLM的Llama模型推断加速优化☆48Updated last year
- ☆11Updated last year
- 使用 cutlass 仓库在 ada 架构上实现 fp8 的 flash attention☆68Updated 9 months ago
- Performance of the C++ interface of flash attention and flash attention v2 in large language model (LLM) inference scenarios.☆37Updated 3 months ago
- NVIDIA TensorRT Hackathon 2023复赛选题:通义千问Qwen-7B用TensorRT-LLM模型搭建及优化☆42Updated last year
- An unofficial cuda assembler, for all generations of SASS, hopefully :)☆83Updated 2 years ago
- OneFlow->ONNX☆43Updated 2 years ago
- ⚡️Write HGEMM from scratch using Tensor Cores with WMMA, MMA and CuTe API, Achieve Peak⚡️ Performance.☆79Updated 3 weeks ago
- ☆24Updated 2 years ago
- Benchmark code for the "Online normalizer calculation for softmax" paper☆94Updated 6 years ago
- 分层解耦的深度学习推理引擎☆73Updated 3 months ago
- This is a demo how to write a high performance convolution run on apple silicon☆54Updated 3 years ago
- A Winograd Minimal Filter Implementation in CUDA☆24Updated 3 years ago
- Decoding Attention is specially optimized for MHA, MQA, GQA and MLA using CUDA core for the decoding stage of LLM inference.☆36Updated 2 months ago
- 使用 CUDA C++ 实现的 llama 模型推理框架☆57Updated 6 months ago
- 大规模并行处理器编程实战 第二版答案☆32Updated 3 years ago